This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variant of fveval1fvcl for the subring evaluation function evalSub1 (Contributed by Thierry Arnoux, 22-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1maprhm.q | |- O = ( R evalSub1 S ) |
|
| evls1maprhm.p | |- P = ( Poly1 ` ( R |`s S ) ) |
||
| evls1maprhm.b | |- B = ( Base ` R ) |
||
| evls1maprhm.u | |- U = ( Base ` P ) |
||
| evls1maprhm.r | |- ( ph -> R e. CRing ) |
||
| evls1maprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
||
| evls1fvcl.1 | |- ( ph -> Y e. B ) |
||
| evls1fvcl.2 | |- ( ph -> M e. U ) |
||
| Assertion | evls1fvcl | |- ( ph -> ( ( O ` M ) ` Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.q | |- O = ( R evalSub1 S ) |
|
| 2 | evls1maprhm.p | |- P = ( Poly1 ` ( R |`s S ) ) |
|
| 3 | evls1maprhm.b | |- B = ( Base ` R ) |
|
| 4 | evls1maprhm.u | |- U = ( Base ` P ) |
|
| 5 | evls1maprhm.r | |- ( ph -> R e. CRing ) |
|
| 6 | evls1maprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
|
| 7 | evls1fvcl.1 | |- ( ph -> Y e. B ) |
|
| 8 | evls1fvcl.2 | |- ( ph -> M e. U ) |
|
| 9 | eqid | |- ( R |`s S ) = ( R |`s S ) |
|
| 10 | eqid | |- ( eval1 ` R ) = ( eval1 ` R ) |
|
| 11 | 1 3 2 9 4 10 5 6 | ressply1evl | |- ( ph -> O = ( ( eval1 ` R ) |` U ) ) |
| 12 | 11 | fveq1d | |- ( ph -> ( O ` M ) = ( ( ( eval1 ` R ) |` U ) ` M ) ) |
| 13 | 8 | fvresd | |- ( ph -> ( ( ( eval1 ` R ) |` U ) ` M ) = ( ( eval1 ` R ) ` M ) ) |
| 14 | 12 13 | eqtrd | |- ( ph -> ( O ` M ) = ( ( eval1 ` R ) ` M ) ) |
| 15 | 14 | fveq1d | |- ( ph -> ( ( O ` M ) ` Y ) = ( ( ( eval1 ` R ) ` M ) ` Y ) ) |
| 16 | eqid | |- ( Poly1 ` R ) = ( Poly1 ` R ) |
|
| 17 | eqid | |- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
|
| 18 | eqid | |- ( ( Poly1 ` R ) |`s U ) = ( ( Poly1 ` R ) |`s U ) |
|
| 19 | 16 9 2 4 6 18 | ressply1bas | |- ( ph -> U = ( Base ` ( ( Poly1 ` R ) |`s U ) ) ) |
| 20 | 18 17 | ressbasss | |- ( Base ` ( ( Poly1 ` R ) |`s U ) ) C_ ( Base ` ( Poly1 ` R ) ) |
| 21 | 19 20 | eqsstrdi | |- ( ph -> U C_ ( Base ` ( Poly1 ` R ) ) ) |
| 22 | 21 8 | sseldd | |- ( ph -> M e. ( Base ` ( Poly1 ` R ) ) ) |
| 23 | 10 16 3 17 5 7 22 | fveval1fvcl | |- ( ph -> ( ( ( eval1 ` R ) ` M ) ` Y ) e. B ) |
| 24 | 15 23 | eqeltrd | |- ( ph -> ( ( O ` M ) ` Y ) e. B ) |