This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitivity relation. (Read A < B and B <_ C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | soi.1 | |- R Or S |
|
| soi.2 | |- R C_ ( S X. S ) |
||
| Assertion | sotri3 | |- ( ( C e. S /\ A R B /\ -. C R B ) -> A R C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | |- R Or S |
|
| 2 | soi.2 | |- R C_ ( S X. S ) |
|
| 3 | 2 | brel | |- ( A R B -> ( A e. S /\ B e. S ) ) |
| 4 | 3 | simprd | |- ( A R B -> B e. S ) |
| 5 | sotric | |- ( ( R Or S /\ ( C e. S /\ B e. S ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
|
| 6 | 1 5 | mpan | |- ( ( C e. S /\ B e. S ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
| 7 | 6 | con2bid | |- ( ( C e. S /\ B e. S ) -> ( ( C = B \/ B R C ) <-> -. C R B ) ) |
| 8 | breq2 | |- ( C = B -> ( A R C <-> A R B ) ) |
|
| 9 | 8 | biimprd | |- ( C = B -> ( A R B -> A R C ) ) |
| 10 | 1 2 | sotri | |- ( ( A R B /\ B R C ) -> A R C ) |
| 11 | 10 | expcom | |- ( B R C -> ( A R B -> A R C ) ) |
| 12 | 9 11 | jaoi | |- ( ( C = B \/ B R C ) -> ( A R B -> A R C ) ) |
| 13 | 7 12 | biimtrrdi | |- ( ( C e. S /\ B e. S ) -> ( -. C R B -> ( A R B -> A R C ) ) ) |
| 14 | 13 | com3r | |- ( A R B -> ( ( C e. S /\ B e. S ) -> ( -. C R B -> A R C ) ) ) |
| 15 | 4 14 | mpan2d | |- ( A R B -> ( C e. S -> ( -. C R B -> A R C ) ) ) |
| 16 | 15 | 3imp21 | |- ( ( C e. S /\ A R B /\ -. C R B ) -> A R C ) |