This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domtriord | |- ( ( A e. On /\ B e. On ) -> ( A ~<_ B <-> -. B ~< A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbth | |- ( ( B ~<_ A /\ A ~<_ B ) -> B ~~ A ) |
|
| 2 | 1 | expcom | |- ( A ~<_ B -> ( B ~<_ A -> B ~~ A ) ) |
| 3 | 2 | a1i | |- ( ( A e. On /\ B e. On ) -> ( A ~<_ B -> ( B ~<_ A -> B ~~ A ) ) ) |
| 4 | iman | |- ( ( B ~<_ A -> B ~~ A ) <-> -. ( B ~<_ A /\ -. B ~~ A ) ) |
|
| 5 | brsdom | |- ( B ~< A <-> ( B ~<_ A /\ -. B ~~ A ) ) |
|
| 6 | 4 5 | xchbinxr | |- ( ( B ~<_ A -> B ~~ A ) <-> -. B ~< A ) |
| 7 | 3 6 | imbitrdi | |- ( ( A e. On /\ B e. On ) -> ( A ~<_ B -> -. B ~< A ) ) |
| 8 | onelss | |- ( B e. On -> ( A e. B -> A C_ B ) ) |
|
| 9 | ssdomg | |- ( B e. On -> ( A C_ B -> A ~<_ B ) ) |
|
| 10 | 8 9 | syld | |- ( B e. On -> ( A e. B -> A ~<_ B ) ) |
| 11 | 10 | adantl | |- ( ( A e. On /\ B e. On ) -> ( A e. B -> A ~<_ B ) ) |
| 12 | 11 | con3d | |- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> -. A e. B ) ) |
| 13 | ontri1 | |- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) ) |
|
| 14 | 13 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( B C_ A <-> -. A e. B ) ) |
| 15 | 12 14 | sylibrd | |- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> B C_ A ) ) |
| 16 | ssdomg | |- ( A e. On -> ( B C_ A -> B ~<_ A ) ) |
|
| 17 | 16 | adantr | |- ( ( A e. On /\ B e. On ) -> ( B C_ A -> B ~<_ A ) ) |
| 18 | 15 17 | syld | |- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> B ~<_ A ) ) |
| 19 | ensym | |- ( B ~~ A -> A ~~ B ) |
|
| 20 | endom | |- ( A ~~ B -> A ~<_ B ) |
|
| 21 | 19 20 | syl | |- ( B ~~ A -> A ~<_ B ) |
| 22 | 21 | con3i | |- ( -. A ~<_ B -> -. B ~~ A ) |
| 23 | 18 22 | jca2 | |- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> ( B ~<_ A /\ -. B ~~ A ) ) ) |
| 24 | 23 5 | imbitrrdi | |- ( ( A e. On /\ B e. On ) -> ( -. A ~<_ B -> B ~< A ) ) |
| 25 | 24 | con1d | |- ( ( A e. On /\ B e. On ) -> ( -. B ~< A -> A ~<_ B ) ) |
| 26 | 7 25 | impbid | |- ( ( A e. On /\ B e. On ) -> ( A ~<_ B <-> -. B ~< A ) ) |