This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of the aleph function. Theorem 8A(a) of Enderton p. 213 and its converse. (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 9-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephord2 | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( aleph ` A ) e. ( aleph ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephord | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
|
| 2 | alephon | |- ( aleph ` A ) e. On |
|
| 3 | alephon | |- ( aleph ` B ) e. On |
|
| 4 | onenon | |- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
|
| 5 | 3 4 | ax-mp | |- ( aleph ` B ) e. dom card |
| 6 | cardsdomel | |- ( ( ( aleph ` A ) e. On /\ ( aleph ` B ) e. dom card ) -> ( ( aleph ` A ) ~< ( aleph ` B ) <-> ( aleph ` A ) e. ( card ` ( aleph ` B ) ) ) ) |
|
| 7 | 2 5 6 | mp2an | |- ( ( aleph ` A ) ~< ( aleph ` B ) <-> ( aleph ` A ) e. ( card ` ( aleph ` B ) ) ) |
| 8 | alephcard | |- ( card ` ( aleph ` B ) ) = ( aleph ` B ) |
|
| 9 | 8 | eleq2i | |- ( ( aleph ` A ) e. ( card ` ( aleph ` B ) ) <-> ( aleph ` A ) e. ( aleph ` B ) ) |
| 10 | 7 9 | bitri | |- ( ( aleph ` A ) ~< ( aleph ` B ) <-> ( aleph ` A ) e. ( aleph ` B ) ) |
| 11 | 1 10 | bitrdi | |- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( aleph ` A ) e. ( aleph ` B ) ) ) |