This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ord0

Description: The empty set is an ordinal class. Remark 1.5 of Schloeder p. 1. (Contributed by NM, 11-May-1994)

Ref Expression
Assertion ord0
|- Ord (/)

Proof

Step Hyp Ref Expression
1 tr0
 |-  Tr (/)
2 we0
 |-  _E We (/)
3 df-ord
 |-  ( Ord (/) <-> ( Tr (/) /\ _E We (/) ) )
4 1 2 3 mpbir2an
 |-  Ord (/)