This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of TakeutiZaring p. 104. (Contributed by NM, 4-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardinfima | |- ( A e. B -> ( ( F : A --> ( _om u. ran aleph ) /\ E. x e. A ( F ` x ) e. ran aleph ) -> U. ( F " A ) e. ran aleph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. B -> A e. _V ) |
|
| 2 | isinfcard | |- ( ( _om C_ ( F ` x ) /\ ( card ` ( F ` x ) ) = ( F ` x ) ) <-> ( F ` x ) e. ran aleph ) |
|
| 3 | 2 | bicomi | |- ( ( F ` x ) e. ran aleph <-> ( _om C_ ( F ` x ) /\ ( card ` ( F ` x ) ) = ( F ` x ) ) ) |
| 4 | 3 | simplbi | |- ( ( F ` x ) e. ran aleph -> _om C_ ( F ` x ) ) |
| 5 | ffn | |- ( F : A --> ( _om u. ran aleph ) -> F Fn A ) |
|
| 6 | fnfvelrn | |- ( ( F Fn A /\ x e. A ) -> ( F ` x ) e. ran F ) |
|
| 7 | 6 | ex | |- ( F Fn A -> ( x e. A -> ( F ` x ) e. ran F ) ) |
| 8 | fnima | |- ( F Fn A -> ( F " A ) = ran F ) |
|
| 9 | 8 | eleq2d | |- ( F Fn A -> ( ( F ` x ) e. ( F " A ) <-> ( F ` x ) e. ran F ) ) |
| 10 | 7 9 | sylibrd | |- ( F Fn A -> ( x e. A -> ( F ` x ) e. ( F " A ) ) ) |
| 11 | elssuni | |- ( ( F ` x ) e. ( F " A ) -> ( F ` x ) C_ U. ( F " A ) ) |
|
| 12 | 10 11 | syl6 | |- ( F Fn A -> ( x e. A -> ( F ` x ) C_ U. ( F " A ) ) ) |
| 13 | 12 | imp | |- ( ( F Fn A /\ x e. A ) -> ( F ` x ) C_ U. ( F " A ) ) |
| 14 | 5 13 | sylan | |- ( ( F : A --> ( _om u. ran aleph ) /\ x e. A ) -> ( F ` x ) C_ U. ( F " A ) ) |
| 15 | 4 14 | sylan9ssr | |- ( ( ( F : A --> ( _om u. ran aleph ) /\ x e. A ) /\ ( F ` x ) e. ran aleph ) -> _om C_ U. ( F " A ) ) |
| 16 | 15 | anasss | |- ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> _om C_ U. ( F " A ) ) |
| 17 | 16 | a1i | |- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> _om C_ U. ( F " A ) ) ) |
| 18 | carduniima | |- ( A e. _V -> ( F : A --> ( _om u. ran aleph ) -> U. ( F " A ) e. ( _om u. ran aleph ) ) ) |
|
| 19 | iscard3 | |- ( ( card ` U. ( F " A ) ) = U. ( F " A ) <-> U. ( F " A ) e. ( _om u. ran aleph ) ) |
|
| 20 | 18 19 | imbitrrdi | |- ( A e. _V -> ( F : A --> ( _om u. ran aleph ) -> ( card ` U. ( F " A ) ) = U. ( F " A ) ) ) |
| 21 | 20 | adantrd | |- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> ( card ` U. ( F " A ) ) = U. ( F " A ) ) ) |
| 22 | 17 21 | jcad | |- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> ( _om C_ U. ( F " A ) /\ ( card ` U. ( F " A ) ) = U. ( F " A ) ) ) ) |
| 23 | isinfcard | |- ( ( _om C_ U. ( F " A ) /\ ( card ` U. ( F " A ) ) = U. ( F " A ) ) <-> U. ( F " A ) e. ran aleph ) |
|
| 24 | 22 23 | imbitrdi | |- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> U. ( F " A ) e. ran aleph ) ) |
| 25 | 24 | exp4d | |- ( A e. _V -> ( F : A --> ( _om u. ran aleph ) -> ( x e. A -> ( ( F ` x ) e. ran aleph -> U. ( F " A ) e. ran aleph ) ) ) ) |
| 26 | 25 | imp | |- ( ( A e. _V /\ F : A --> ( _om u. ran aleph ) ) -> ( x e. A -> ( ( F ` x ) e. ran aleph -> U. ( F " A ) e. ran aleph ) ) ) |
| 27 | 26 | rexlimdv | |- ( ( A e. _V /\ F : A --> ( _om u. ran aleph ) ) -> ( E. x e. A ( F ` x ) e. ran aleph -> U. ( F " A ) e. ran aleph ) ) |
| 28 | 27 | expimpd | |- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ E. x e. A ( F ` x ) e. ran aleph ) -> U. ( F " A ) e. ran aleph ) ) |
| 29 | 1 28 | syl | |- ( A e. B -> ( ( F : A --> ( _om u. ran aleph ) /\ E. x e. A ( F ` x ) e. ran aleph ) -> U. ( F " A ) e. ran aleph ) ) |