This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for alephfp . (Contributed by NM, 6-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alephfplem.1 | |- H = ( rec ( aleph , _om ) |` _om ) |
|
| Assertion | alephfplem1 | |- ( H ` (/) ) e. ran aleph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfplem.1 | |- H = ( rec ( aleph , _om ) |` _om ) |
|
| 2 | omex | |- _om e. _V |
|
| 3 | fr0g | |- ( _om e. _V -> ( ( rec ( aleph , _om ) |` _om ) ` (/) ) = _om ) |
|
| 4 | 2 3 | ax-mp | |- ( ( rec ( aleph , _om ) |` _om ) ` (/) ) = _om |
| 5 | 1 | fveq1i | |- ( H ` (/) ) = ( ( rec ( aleph , _om ) |` _om ) ` (/) ) |
| 6 | aleph0 | |- ( aleph ` (/) ) = _om |
|
| 7 | 4 5 6 | 3eqtr4i | |- ( H ` (/) ) = ( aleph ` (/) ) |
| 8 | alephfnon | |- aleph Fn On |
|
| 9 | 0elon | |- (/) e. On |
|
| 10 | fnfvelrn | |- ( ( aleph Fn On /\ (/) e. On ) -> ( aleph ` (/) ) e. ran aleph ) |
|
| 11 | 8 9 10 | mp2an | |- ( aleph ` (/) ) e. ran aleph |
| 12 | 7 11 | eqeltri | |- ( H ` (/) ) e. ran aleph |