This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsdom | |- ( ( A e. On /\ B e. On ) -> ( A e. ( aleph ` B ) <-> A ~< ( aleph ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. On /\ B e. On ) -> A e. On ) |
|
| 2 | alephon | |- ( aleph ` B ) e. On |
|
| 3 | onenon | |- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
|
| 4 | 2 3 | ax-mp | |- ( aleph ` B ) e. dom card |
| 5 | cardsdomel | |- ( ( A e. On /\ ( aleph ` B ) e. dom card ) -> ( A ~< ( aleph ` B ) <-> A e. ( card ` ( aleph ` B ) ) ) ) |
|
| 6 | 1 4 5 | sylancl | |- ( ( A e. On /\ B e. On ) -> ( A ~< ( aleph ` B ) <-> A e. ( card ` ( aleph ` B ) ) ) ) |
| 7 | alephcard | |- ( card ` ( aleph ` B ) ) = ( aleph ` B ) |
|
| 8 | 7 | eleq2i | |- ( A e. ( card ` ( aleph ` B ) ) <-> A e. ( aleph ` B ) ) |
| 9 | 6 8 | bitr2di | |- ( ( A e. On /\ B e. On ) -> ( A e. ( aleph ` B ) <-> A ~< ( aleph ` B ) ) ) |