This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsubeq4 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) = ( C + D ) <-> ( C - A ) = ( B - D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | |- ( ( C - A ) = ( B - D ) <-> ( B - D ) = ( C - A ) ) |
|
| 2 | subcl | |- ( ( C e. CC /\ A e. CC ) -> ( C - A ) e. CC ) |
|
| 3 | 2 | ancoms | |- ( ( A e. CC /\ C e. CC ) -> ( C - A ) e. CC ) |
| 4 | subadd | |- ( ( B e. CC /\ D e. CC /\ ( C - A ) e. CC ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
|
| 5 | 4 | 3expa | |- ( ( ( B e. CC /\ D e. CC ) /\ ( C - A ) e. CC ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
| 6 | 5 | ancoms | |- ( ( ( C - A ) e. CC /\ ( B e. CC /\ D e. CC ) ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
| 7 | 3 6 | sylan | |- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
| 8 | 7 | an4s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
| 9 | 1 8 | bitrid | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( C - A ) = ( B - D ) <-> ( D + ( C - A ) ) = B ) ) |
| 10 | addcom | |- ( ( C e. CC /\ D e. CC ) -> ( C + D ) = ( D + C ) ) |
|
| 11 | 10 | adantl | |- ( ( A e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( C + D ) = ( D + C ) ) |
| 12 | 11 | oveq1d | |- ( ( A e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( C + D ) - A ) = ( ( D + C ) - A ) ) |
| 13 | addsubass | |- ( ( D e. CC /\ C e. CC /\ A e. CC ) -> ( ( D + C ) - A ) = ( D + ( C - A ) ) ) |
|
| 14 | 13 | 3com12 | |- ( ( C e. CC /\ D e. CC /\ A e. CC ) -> ( ( D + C ) - A ) = ( D + ( C - A ) ) ) |
| 15 | 14 | 3expa | |- ( ( ( C e. CC /\ D e. CC ) /\ A e. CC ) -> ( ( D + C ) - A ) = ( D + ( C - A ) ) ) |
| 16 | 15 | ancoms | |- ( ( A e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( D + C ) - A ) = ( D + ( C - A ) ) ) |
| 17 | 12 16 | eqtrd | |- ( ( A e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( C + D ) - A ) = ( D + ( C - A ) ) ) |
| 18 | 17 | adantlr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( C + D ) - A ) = ( D + ( C - A ) ) ) |
| 19 | 18 | eqeq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( C + D ) - A ) = B <-> ( D + ( C - A ) ) = B ) ) |
| 20 | addcl | |- ( ( C e. CC /\ D e. CC ) -> ( C + D ) e. CC ) |
|
| 21 | subadd | |- ( ( ( C + D ) e. CC /\ A e. CC /\ B e. CC ) -> ( ( ( C + D ) - A ) = B <-> ( A + B ) = ( C + D ) ) ) |
|
| 22 | 21 | 3expb | |- ( ( ( C + D ) e. CC /\ ( A e. CC /\ B e. CC ) ) -> ( ( ( C + D ) - A ) = B <-> ( A + B ) = ( C + D ) ) ) |
| 23 | 22 | ancoms | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C + D ) e. CC ) -> ( ( ( C + D ) - A ) = B <-> ( A + B ) = ( C + D ) ) ) |
| 24 | 20 23 | sylan2 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( C + D ) - A ) = B <-> ( A + B ) = ( C + D ) ) ) |
| 25 | 9 19 24 | 3bitr2rd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) = ( C + D ) <-> ( C - A ) = ( B - D ) ) ) |