This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsubeq4 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐶 − 𝐴 ) = ( 𝐵 − 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | ⊢ ( ( 𝐶 − 𝐴 ) = ( 𝐵 − 𝐷 ) ↔ ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ) | |
| 2 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
| 4 | subadd | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ ( 𝐶 − 𝐴 ) ∈ ℂ ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) | |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐶 − 𝐴 ) ∈ ℂ ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
| 6 | 5 | ancoms | ⊢ ( ( ( 𝐶 − 𝐴 ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
| 7 | 3 6 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
| 8 | 7 | an4s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐴 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
| 9 | 1 8 | bitrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 − 𝐴 ) = ( 𝐵 − 𝐷 ) ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
| 10 | addcom | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) − 𝐴 ) = ( ( 𝐷 + 𝐶 ) − 𝐴 ) ) |
| 13 | addsubass | ⊢ ( ( 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐷 + 𝐶 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) | |
| 14 | 13 | 3com12 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐷 + 𝐶 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
| 15 | 14 | 3expa | ⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝐷 + 𝐶 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
| 16 | 15 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐷 + 𝐶 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
| 17 | 12 16 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) − 𝐴 ) = ( 𝐷 + ( 𝐶 − 𝐴 ) ) ) |
| 19 | 18 | eqeq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐷 + ( 𝐶 − 𝐴 ) ) = 𝐵 ) ) |
| 20 | addcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + 𝐷 ) ∈ ℂ ) | |
| 21 | subadd | ⊢ ( ( ( 𝐶 + 𝐷 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) ) | |
| 22 | 21 | 3expb | ⊢ ( ( ( 𝐶 + 𝐷 ) ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) ) |
| 23 | 22 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 + 𝐷 ) ∈ ℂ ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) ) |
| 24 | 20 23 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐶 + 𝐷 ) − 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) ) |
| 25 | 9 19 24 | 3bitr2rd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐶 − 𝐴 ) = ( 𝐵 − 𝐷 ) ) ) |