This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addltmul | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( A + B ) < ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | ltsub1 | |- ( ( 2 e. RR /\ A e. RR /\ 1 e. RR ) -> ( 2 < A <-> ( 2 - 1 ) < ( A - 1 ) ) ) |
|
| 4 | 1 2 3 | mp3an13 | |- ( A e. RR -> ( 2 < A <-> ( 2 - 1 ) < ( A - 1 ) ) ) |
| 5 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 6 | 5 | breq1i | |- ( ( 2 - 1 ) < ( A - 1 ) <-> 1 < ( A - 1 ) ) |
| 7 | 4 6 | bitrdi | |- ( A e. RR -> ( 2 < A <-> 1 < ( A - 1 ) ) ) |
| 8 | ltsub1 | |- ( ( 2 e. RR /\ B e. RR /\ 1 e. RR ) -> ( 2 < B <-> ( 2 - 1 ) < ( B - 1 ) ) ) |
|
| 9 | 1 2 8 | mp3an13 | |- ( B e. RR -> ( 2 < B <-> ( 2 - 1 ) < ( B - 1 ) ) ) |
| 10 | 5 | breq1i | |- ( ( 2 - 1 ) < ( B - 1 ) <-> 1 < ( B - 1 ) ) |
| 11 | 9 10 | bitrdi | |- ( B e. RR -> ( 2 < B <-> 1 < ( B - 1 ) ) ) |
| 12 | 7 11 | bi2anan9 | |- ( ( A e. RR /\ B e. RR ) -> ( ( 2 < A /\ 2 < B ) <-> ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) ) |
| 13 | peano2rem | |- ( A e. RR -> ( A - 1 ) e. RR ) |
|
| 14 | peano2rem | |- ( B e. RR -> ( B - 1 ) e. RR ) |
|
| 15 | mulgt1 | |- ( ( ( ( A - 1 ) e. RR /\ ( B - 1 ) e. RR ) /\ ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) |
|
| 16 | 15 | ex | |- ( ( ( A - 1 ) e. RR /\ ( B - 1 ) e. RR ) -> ( ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) ) |
| 17 | 13 14 16 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( 1 < ( A - 1 ) /\ 1 < ( B - 1 ) ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) ) |
| 18 | 12 17 | sylbid | |- ( ( A e. RR /\ B e. RR ) -> ( ( 2 < A /\ 2 < B ) -> 1 < ( ( A - 1 ) x. ( B - 1 ) ) ) ) |
| 19 | recn | |- ( A e. RR -> A e. CC ) |
|
| 20 | recn | |- ( B e. RR -> B e. CC ) |
|
| 21 | ax-1cn | |- 1 e. CC |
|
| 22 | mulsub | |- ( ( ( A e. CC /\ 1 e. CC ) /\ ( B e. CC /\ 1 e. CC ) ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
|
| 23 | 21 22 | mpanl2 | |- ( ( A e. CC /\ ( B e. CC /\ 1 e. CC ) ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
| 24 | 21 23 | mpanr2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
| 25 | 19 20 24 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
| 26 | 25 | breq2d | |- ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( A - 1 ) x. ( B - 1 ) ) <-> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) |
| 27 | remulcl | |- ( ( A e. RR /\ 1 e. RR ) -> ( A x. 1 ) e. RR ) |
|
| 28 | 2 27 | mpan2 | |- ( A e. RR -> ( A x. 1 ) e. RR ) |
| 29 | remulcl | |- ( ( B e. RR /\ 1 e. RR ) -> ( B x. 1 ) e. RR ) |
|
| 30 | 2 29 | mpan2 | |- ( B e. RR -> ( B x. 1 ) e. RR ) |
| 31 | readdcl | |- ( ( ( A x. 1 ) e. RR /\ ( B x. 1 ) e. RR ) -> ( ( A x. 1 ) + ( B x. 1 ) ) e. RR ) |
|
| 32 | 28 30 31 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( A x. 1 ) + ( B x. 1 ) ) e. RR ) |
| 33 | remulcl | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
|
| 34 | 2 2 | remulcli | |- ( 1 x. 1 ) e. RR |
| 35 | readdcl | |- ( ( ( A x. B ) e. RR /\ ( 1 x. 1 ) e. RR ) -> ( ( A x. B ) + ( 1 x. 1 ) ) e. RR ) |
|
| 36 | 33 34 35 | sylancl | |- ( ( A e. RR /\ B e. RR ) -> ( ( A x. B ) + ( 1 x. 1 ) ) e. RR ) |
| 37 | ltaddsub2 | |- ( ( ( ( A x. 1 ) + ( B x. 1 ) ) e. RR /\ 1 e. RR /\ ( ( A x. B ) + ( 1 x. 1 ) ) e. RR ) -> ( ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + ( 1 x. 1 ) ) <-> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) |
|
| 38 | 2 37 | mp3an2 | |- ( ( ( ( A x. 1 ) + ( B x. 1 ) ) e. RR /\ ( ( A x. B ) + ( 1 x. 1 ) ) e. RR ) -> ( ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + ( 1 x. 1 ) ) <-> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) |
| 39 | 32 36 38 | syl2anc | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + ( 1 x. 1 ) ) <-> 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) ) |
| 40 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 41 | 40 | oveq2i | |- ( ( A x. B ) + ( 1 x. 1 ) ) = ( ( A x. B ) + 1 ) |
| 42 | 41 | breq2i | |- ( ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + ( 1 x. 1 ) ) <-> ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + 1 ) ) |
| 43 | 39 42 | bitr3di | |- ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) <-> ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + 1 ) ) ) |
| 44 | ltadd1 | |- ( ( ( ( A x. 1 ) + ( B x. 1 ) ) e. RR /\ ( A x. B ) e. RR /\ 1 e. RR ) -> ( ( ( A x. 1 ) + ( B x. 1 ) ) < ( A x. B ) <-> ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + 1 ) ) ) |
|
| 45 | 2 44 | mp3an3 | |- ( ( ( ( A x. 1 ) + ( B x. 1 ) ) e. RR /\ ( A x. B ) e. RR ) -> ( ( ( A x. 1 ) + ( B x. 1 ) ) < ( A x. B ) <-> ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + 1 ) ) ) |
| 46 | 32 33 45 | syl2anc | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A x. 1 ) + ( B x. 1 ) ) < ( A x. B ) <-> ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + 1 ) ) ) |
| 47 | ax-1rid | |- ( A e. RR -> ( A x. 1 ) = A ) |
|
| 48 | ax-1rid | |- ( B e. RR -> ( B x. 1 ) = B ) |
|
| 49 | 47 48 | oveqan12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A x. 1 ) + ( B x. 1 ) ) = ( A + B ) ) |
| 50 | 49 | breq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A x. 1 ) + ( B x. 1 ) ) < ( A x. B ) <-> ( A + B ) < ( A x. B ) ) ) |
| 51 | 46 50 | bitr3d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A x. 1 ) + ( B x. 1 ) ) + 1 ) < ( ( A x. B ) + 1 ) <-> ( A + B ) < ( A x. B ) ) ) |
| 52 | 26 43 51 | 3bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( 1 < ( ( A - 1 ) x. ( B - 1 ) ) <-> ( A + B ) < ( A x. B ) ) ) |
| 53 | 18 52 | sylibd | |- ( ( A e. RR /\ B e. RR ) -> ( ( 2 < A /\ 2 < B ) -> ( A + B ) < ( A x. B ) ) ) |
| 54 | 53 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 2 < A /\ 2 < B ) ) -> ( A + B ) < ( A x. B ) ) |