This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nominpos | |- -. E. x e. RR ( 0 < x /\ -. E. y e. RR ( 0 < y /\ y < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcl | |- ( x e. RR -> ( x / 2 ) e. RR ) |
|
| 2 | 2re | |- 2 e. RR |
|
| 3 | 2pos | |- 0 < 2 |
|
| 4 | divgt0 | |- ( ( ( x e. RR /\ 0 < x ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 < ( x / 2 ) ) |
|
| 5 | 2 3 4 | mpanr12 | |- ( ( x e. RR /\ 0 < x ) -> 0 < ( x / 2 ) ) |
| 6 | 5 | ex | |- ( x e. RR -> ( 0 < x -> 0 < ( x / 2 ) ) ) |
| 7 | halfpos | |- ( x e. RR -> ( 0 < x <-> ( x / 2 ) < x ) ) |
|
| 8 | 7 | biimpd | |- ( x e. RR -> ( 0 < x -> ( x / 2 ) < x ) ) |
| 9 | 6 8 | jcad | |- ( x e. RR -> ( 0 < x -> ( 0 < ( x / 2 ) /\ ( x / 2 ) < x ) ) ) |
| 10 | breq2 | |- ( y = ( x / 2 ) -> ( 0 < y <-> 0 < ( x / 2 ) ) ) |
|
| 11 | breq1 | |- ( y = ( x / 2 ) -> ( y < x <-> ( x / 2 ) < x ) ) |
|
| 12 | 10 11 | anbi12d | |- ( y = ( x / 2 ) -> ( ( 0 < y /\ y < x ) <-> ( 0 < ( x / 2 ) /\ ( x / 2 ) < x ) ) ) |
| 13 | 12 | rspcev | |- ( ( ( x / 2 ) e. RR /\ ( 0 < ( x / 2 ) /\ ( x / 2 ) < x ) ) -> E. y e. RR ( 0 < y /\ y < x ) ) |
| 14 | 1 9 13 | syl6an | |- ( x e. RR -> ( 0 < x -> E. y e. RR ( 0 < y /\ y < x ) ) ) |
| 15 | iman | |- ( ( 0 < x -> E. y e. RR ( 0 < y /\ y < x ) ) <-> -. ( 0 < x /\ -. E. y e. RR ( 0 < y /\ y < x ) ) ) |
|
| 16 | 14 15 | sylib | |- ( x e. RR -> -. ( 0 < x /\ -. E. y e. RR ( 0 < y /\ y < x ) ) ) |
| 17 | 16 | nrex | |- -. E. x e. RR ( 0 < x /\ -. E. y e. RR ( 0 < y /\ y < x ) ) |