This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltadd1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( A + C ) < ( B + C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C + A ) < ( C + B ) ) ) |
|
| 2 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 3 | 2 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
| 4 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 5 | 4 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 6 | 3 5 | addcomd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + A ) = ( A + C ) ) |
| 7 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 8 | 7 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 9 | 3 8 | addcomd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + B ) = ( B + C ) ) |
| 10 | 6 9 | breq12d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) < ( C + B ) <-> ( A + C ) < ( B + C ) ) ) |
| 11 | 1 10 | bitrd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( A + C ) < ( B + C ) ) ) |