This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of two differences. (Contributed by NM, 14-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulsub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 2 | negsub | |- ( ( C e. CC /\ D e. CC ) -> ( C + -u D ) = ( C - D ) ) |
|
| 3 | 1 2 | oveqan12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( A - B ) x. ( C - D ) ) ) |
| 4 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 5 | negcl | |- ( D e. CC -> -u D e. CC ) |
|
| 6 | muladd | |- ( ( ( A e. CC /\ -u B e. CC ) /\ ( C e. CC /\ -u D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( ( A x. C ) + ( -u D x. -u B ) ) + ( ( A x. -u D ) + ( C x. -u B ) ) ) ) |
|
| 7 | 5 6 | sylanr2 | |- ( ( ( A e. CC /\ -u B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( ( A x. C ) + ( -u D x. -u B ) ) + ( ( A x. -u D ) + ( C x. -u B ) ) ) ) |
| 8 | 4 7 | sylanl2 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( ( A x. C ) + ( -u D x. -u B ) ) + ( ( A x. -u D ) + ( C x. -u B ) ) ) ) |
| 9 | mul2neg | |- ( ( D e. CC /\ B e. CC ) -> ( -u D x. -u B ) = ( D x. B ) ) |
|
| 10 | 9 | ancoms | |- ( ( B e. CC /\ D e. CC ) -> ( -u D x. -u B ) = ( D x. B ) ) |
| 11 | 10 | oveq2d | |- ( ( B e. CC /\ D e. CC ) -> ( ( A x. C ) + ( -u D x. -u B ) ) = ( ( A x. C ) + ( D x. B ) ) ) |
| 12 | 11 | ad2ant2l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( -u D x. -u B ) ) = ( ( A x. C ) + ( D x. B ) ) ) |
| 13 | mulneg2 | |- ( ( A e. CC /\ D e. CC ) -> ( A x. -u D ) = -u ( A x. D ) ) |
|
| 14 | mulneg2 | |- ( ( C e. CC /\ B e. CC ) -> ( C x. -u B ) = -u ( C x. B ) ) |
|
| 15 | 13 14 | oveqan12d | |- ( ( ( A e. CC /\ D e. CC ) /\ ( C e. CC /\ B e. CC ) ) -> ( ( A x. -u D ) + ( C x. -u B ) ) = ( -u ( A x. D ) + -u ( C x. B ) ) ) |
| 16 | mulcl | |- ( ( A e. CC /\ D e. CC ) -> ( A x. D ) e. CC ) |
|
| 17 | mulcl | |- ( ( C e. CC /\ B e. CC ) -> ( C x. B ) e. CC ) |
|
| 18 | negdi | |- ( ( ( A x. D ) e. CC /\ ( C x. B ) e. CC ) -> -u ( ( A x. D ) + ( C x. B ) ) = ( -u ( A x. D ) + -u ( C x. B ) ) ) |
|
| 19 | 16 17 18 | syl2an | |- ( ( ( A e. CC /\ D e. CC ) /\ ( C e. CC /\ B e. CC ) ) -> -u ( ( A x. D ) + ( C x. B ) ) = ( -u ( A x. D ) + -u ( C x. B ) ) ) |
| 20 | 15 19 | eqtr4d | |- ( ( ( A e. CC /\ D e. CC ) /\ ( C e. CC /\ B e. CC ) ) -> ( ( A x. -u D ) + ( C x. -u B ) ) = -u ( ( A x. D ) + ( C x. B ) ) ) |
| 21 | 20 | ancom2s | |- ( ( ( A e. CC /\ D e. CC ) /\ ( B e. CC /\ C e. CC ) ) -> ( ( A x. -u D ) + ( C x. -u B ) ) = -u ( ( A x. D ) + ( C x. B ) ) ) |
| 22 | 21 | an42s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. -u D ) + ( C x. -u B ) ) = -u ( ( A x. D ) + ( C x. B ) ) ) |
| 23 | 12 22 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( -u D x. -u B ) ) + ( ( A x. -u D ) + ( C x. -u B ) ) ) = ( ( ( A x. C ) + ( D x. B ) ) + -u ( ( A x. D ) + ( C x. B ) ) ) ) |
| 24 | mulcl | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
|
| 25 | mulcl | |- ( ( D e. CC /\ B e. CC ) -> ( D x. B ) e. CC ) |
|
| 26 | 25 | ancoms | |- ( ( B e. CC /\ D e. CC ) -> ( D x. B ) e. CC ) |
| 27 | addcl | |- ( ( ( A x. C ) e. CC /\ ( D x. B ) e. CC ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
|
| 28 | 24 26 27 | syl2an | |- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
| 29 | 28 | an4s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
| 30 | 17 | ancoms | |- ( ( B e. CC /\ C e. CC ) -> ( C x. B ) e. CC ) |
| 31 | addcl | |- ( ( ( A x. D ) e. CC /\ ( C x. B ) e. CC ) -> ( ( A x. D ) + ( C x. B ) ) e. CC ) |
|
| 32 | 16 30 31 | syl2an | |- ( ( ( A e. CC /\ D e. CC ) /\ ( B e. CC /\ C e. CC ) ) -> ( ( A x. D ) + ( C x. B ) ) e. CC ) |
| 33 | 32 | an42s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) + ( C x. B ) ) e. CC ) |
| 34 | 29 33 | negsubd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( D x. B ) ) + -u ( ( A x. D ) + ( C x. B ) ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |
| 35 | 8 23 34 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + -u B ) x. ( C + -u D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |
| 36 | 3 35 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) x. ( C - D ) ) = ( ( ( A x. C ) + ( D x. B ) ) - ( ( A x. D ) + ( C x. B ) ) ) ) |