This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arccosine function has range within a vertical strip of the complex plane with real part between 0 and _pi . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acosbnd | |- ( A e. CC -> ( Re ` ( arccos ` A ) ) e. ( 0 [,] _pi ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acosval | |- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
|
| 2 | 1 | fveq2d | |- ( A e. CC -> ( Re ` ( arccos ` A ) ) = ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
| 3 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 4 | 3 | recni | |- ( _pi / 2 ) e. CC |
| 5 | asincl | |- ( A e. CC -> ( arcsin ` A ) e. CC ) |
|
| 6 | resub | |- ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` A ) e. CC ) -> ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( Re ` ( _pi / 2 ) ) - ( Re ` ( arcsin ` A ) ) ) ) |
|
| 7 | 4 5 6 | sylancr | |- ( A e. CC -> ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( Re ` ( _pi / 2 ) ) - ( Re ` ( arcsin ` A ) ) ) ) |
| 8 | rere | |- ( ( _pi / 2 ) e. RR -> ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) ) |
|
| 9 | 3 8 | ax-mp | |- ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) |
| 10 | 9 | oveq1i | |- ( ( Re ` ( _pi / 2 ) ) - ( Re ` ( arcsin ` A ) ) ) = ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) |
| 11 | 7 10 | eqtrdi | |- ( A e. CC -> ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) ) |
| 12 | 2 11 | eqtrd | |- ( A e. CC -> ( Re ` ( arccos ` A ) ) = ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) ) |
| 13 | 5 | recld | |- ( A e. CC -> ( Re ` ( arcsin ` A ) ) e. RR ) |
| 14 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ ( Re ` ( arcsin ` A ) ) e. RR ) -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. RR ) |
|
| 15 | 3 13 14 | sylancr | |- ( A e. CC -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. RR ) |
| 16 | asinbnd | |- ( A e. CC -> ( Re ` ( arcsin ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 17 | neghalfpire | |- -u ( _pi / 2 ) e. RR |
|
| 18 | 17 3 | elicc2i | |- ( ( Re ` ( arcsin ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( ( Re ` ( arcsin ` A ) ) e. RR /\ -u ( _pi / 2 ) <_ ( Re ` ( arcsin ` A ) ) /\ ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) ) |
| 19 | 16 18 | sylib | |- ( A e. CC -> ( ( Re ` ( arcsin ` A ) ) e. RR /\ -u ( _pi / 2 ) <_ ( Re ` ( arcsin ` A ) ) /\ ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) ) |
| 20 | 19 | simp3d | |- ( A e. CC -> ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) |
| 21 | subge0 | |- ( ( ( _pi / 2 ) e. RR /\ ( Re ` ( arcsin ` A ) ) e. RR ) -> ( 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <-> ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) ) |
|
| 22 | 3 13 21 | sylancr | |- ( A e. CC -> ( 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <-> ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) ) |
| 23 | 20 22 | mpbird | |- ( A e. CC -> 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) ) |
| 24 | 3 | a1i | |- ( A e. CC -> ( _pi / 2 ) e. RR ) |
| 25 | pire | |- _pi e. RR |
|
| 26 | 25 | a1i | |- ( A e. CC -> _pi e. RR ) |
| 27 | 25 | recni | |- _pi e. CC |
| 28 | 17 | recni | |- -u ( _pi / 2 ) e. CC |
| 29 | 27 4 | negsubi | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
| 30 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 31 | 27 4 4 30 | subaddrii | |- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
| 32 | 29 31 | eqtri | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
| 33 | 4 27 28 32 | subaddrii | |- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
| 34 | 19 | simp2d | |- ( A e. CC -> -u ( _pi / 2 ) <_ ( Re ` ( arcsin ` A ) ) ) |
| 35 | 33 34 | eqbrtrid | |- ( A e. CC -> ( ( _pi / 2 ) - _pi ) <_ ( Re ` ( arcsin ` A ) ) ) |
| 36 | 24 26 13 35 | subled | |- ( A e. CC -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <_ _pi ) |
| 37 | 0re | |- 0 e. RR |
|
| 38 | 37 25 | elicc2i | |- ( ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. ( 0 [,] _pi ) <-> ( ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. RR /\ 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) /\ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <_ _pi ) ) |
| 39 | 15 23 36 38 | syl3anbrc | |- ( A e. CC -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. ( 0 [,] _pi ) ) |
| 40 | 12 39 | eqeltrd | |- ( A e. CC -> ( Re ` ( arccos ` A ) ) e. ( 0 [,] _pi ) ) |