This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinrebnd | |- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resinf1o | |- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) |
|
| 2 | f1ocnv | |- ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) -> `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u 1 [,] 1 ) -1-1-onto-> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 3 | f1of | |- ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u 1 [,] 1 ) -1-1-onto-> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u 1 [,] 1 ) --> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 4 | 1 2 3 | mp2b | |- `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u 1 [,] 1 ) --> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
| 5 | 4 | ffvelcdmi | |- ( A e. ( -u 1 [,] 1 ) -> ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 6 | 5 | fvresd | |- ( A e. ( -u 1 [,] 1 ) -> ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) = ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) ) |
| 7 | f1ocnvfv2 | |- ( ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) /\ A e. ( -u 1 [,] 1 ) ) -> ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) = A ) |
|
| 8 | 1 7 | mpan | |- ( A e. ( -u 1 [,] 1 ) -> ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) = A ) |
| 9 | 6 8 | eqtr3d | |- ( A e. ( -u 1 [,] 1 ) -> ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) = A ) |
| 10 | 9 | fveq2d | |- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) ) = ( arcsin ` A ) ) |
| 11 | reasinsin | |- ( ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( arcsin ` ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) ) = ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) |
|
| 12 | 5 11 | syl | |- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` ( sin ` ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) ) = ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) |
| 13 | 10 12 | eqtr3d | |- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) = ( `' ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` A ) ) |
| 14 | 13 5 | eqeltrd | |- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |