This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arcsine function has range within a vertical strip of the complex plane with real part between -upi / 2 and pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinbnd | |- ( A e. CC -> ( Re ` ( arcsin ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asinval | |- ( A e. CC -> ( arcsin ` A ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
|
| 2 | 1 | fveq2d | |- ( A e. CC -> ( Re ` ( arcsin ` A ) ) = ( Re ` ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 5 | 3 4 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 8 | subcl | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
|
| 9 | 6 7 8 | sylancr | |- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 10 | 9 | sqrtcld | |- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 11 | 5 10 | addcld | |- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) |
| 12 | asinlem | |- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |
|
| 13 | 11 12 | logcld | |- ( A e. CC -> ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) |
| 14 | imre | |- ( ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( Re ` ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
|
| 15 | 13 14 | syl | |- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( Re ` ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 16 | 2 15 | eqtr4d | |- ( A e. CC -> ( Re ` ( arcsin ` A ) ) = ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 17 | asinlem3 | |- ( A e. CC -> 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
|
| 18 | argrege0 | |- ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 /\ 0 <_ ( Re ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 19 | 11 12 17 18 | syl3anc | |- ( A e. CC -> ( Im ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 20 | 16 19 | eqeltrd | |- ( A e. CC -> ( Re ` ( arcsin ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |