This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arccosine function has range within a vertical strip of the complex plane with real part between 0 and _pi . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acosbnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arccos ‘ 𝐴 ) ) ∈ ( 0 [,] π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acosval | ⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arccos ‘ 𝐴 ) ) = ( ℜ ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
| 3 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 4 | 3 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 5 | asincl | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) | |
| 6 | resub | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( ℜ ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( ℜ ‘ ( π / 2 ) ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( ℜ ‘ ( π / 2 ) ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) |
| 8 | rere | ⊢ ( ( π / 2 ) ∈ ℝ → ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) ) | |
| 9 | 3 8 | ax-mp | ⊢ ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) |
| 10 | 9 | oveq1i | ⊢ ( ( ℜ ‘ ( π / 2 ) ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) = ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) |
| 11 | 7 10 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) |
| 12 | 2 11 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arccos ‘ 𝐴 ) ) = ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) |
| 13 | 5 | recld | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) |
| 14 | resubcl | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) → ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ℝ ) | |
| 15 | 3 13 14 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 16 | asinbnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 17 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 18 | 17 3 | elicc2i | ⊢ ( ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∧ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 19 | 16 18 | sylib | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∧ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 20 | 19 | simp3d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) |
| 21 | subge0 | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 ≤ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ↔ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) | |
| 22 | 3 13 21 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ↔ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 23 | 20 22 | mpbird | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) |
| 24 | 3 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( π / 2 ) ∈ ℝ ) |
| 25 | pire | ⊢ π ∈ ℝ | |
| 26 | 25 | a1i | ⊢ ( 𝐴 ∈ ℂ → π ∈ ℝ ) |
| 27 | 25 | recni | ⊢ π ∈ ℂ |
| 28 | 17 | recni | ⊢ - ( π / 2 ) ∈ ℂ |
| 29 | 27 4 | negsubi | ⊢ ( π + - ( π / 2 ) ) = ( π − ( π / 2 ) ) |
| 30 | pidiv2halves | ⊢ ( ( π / 2 ) + ( π / 2 ) ) = π | |
| 31 | 27 4 4 30 | subaddrii | ⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
| 32 | 29 31 | eqtri | ⊢ ( π + - ( π / 2 ) ) = ( π / 2 ) |
| 33 | 4 27 28 32 | subaddrii | ⊢ ( ( π / 2 ) − π ) = - ( π / 2 ) |
| 34 | 19 | simp2d | ⊢ ( 𝐴 ∈ ℂ → - ( π / 2 ) ≤ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) |
| 35 | 33 34 | eqbrtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − π ) ≤ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) |
| 36 | 24 26 13 35 | subled | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ≤ π ) |
| 37 | 0re | ⊢ 0 ∈ ℝ | |
| 38 | 37 25 | elicc2i | ⊢ ( ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ↔ ( ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∧ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ≤ π ) ) |
| 39 | 15 23 36 38 | syl3anbrc | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ) |
| 40 | 12 39 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arccos ‘ 𝐴 ) ) ∈ ( 0 [,] π ) ) |