This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at the successors. This is the third equation of Péter's definition of the Ackermann function. (Contributed by AV, 8-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackvalsucsucval | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` ( N + 1 ) ) = ( ( Ack ` M ) ` ( ( Ack ` ( M + 1 ) ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 2 | ackvalsuc1 | |- ( ( M e. NN0 /\ ( N + 1 ) e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` ( N + 1 ) ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) ` 1 ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` ( N + 1 ) ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) ` 1 ) ) |
| 4 | fvexd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( Ack ` M ) e. _V ) |
|
| 5 | 1 | adantl | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( N + 1 ) e. NN0 ) |
| 6 | eqidd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) |
|
| 7 | itcovalsucov | |- ( ( ( Ack ` M ) e. _V /\ ( N + 1 ) e. NN0 /\ ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) = ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ) |
|
| 8 | 4 5 6 7 | syl3anc | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) = ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ) |
| 9 | 8 | fveq1d | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) ` 1 ) = ( ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ` 1 ) ) |
| 10 | ackfnnn0 | |- ( M e. NN0 -> ( Ack ` M ) Fn NN0 ) |
|
| 11 | 10 | adantr | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( Ack ` M ) Fn NN0 ) |
| 12 | nn0ex | |- NN0 e. _V |
|
| 13 | 12 | a1i | |- ( ( M e. NN0 /\ N e. NN0 ) -> NN0 e. _V ) |
| 14 | ackendofnn0 | |- ( M e. NN0 -> ( Ack ` M ) : NN0 --> NN0 ) |
|
| 15 | 14 | adantr | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( Ack ` M ) : NN0 --> NN0 ) |
| 16 | simpr | |- ( ( M e. NN0 /\ N e. NN0 ) -> N e. NN0 ) |
|
| 17 | 13 15 16 | itcovalendof | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` N ) : NN0 --> NN0 ) |
| 18 | 17 | ffnd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` N ) Fn NN0 ) |
| 19 | 17 | frnd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ran ( ( IterComp ` ( Ack ` M ) ) ` N ) C_ NN0 ) |
| 20 | fnco | |- ( ( ( Ack ` M ) Fn NN0 /\ ( ( IterComp ` ( Ack ` M ) ) ` N ) Fn NN0 /\ ran ( ( IterComp ` ( Ack ` M ) ) ` N ) C_ NN0 ) -> ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) Fn NN0 ) |
|
| 21 | 11 18 19 20 | syl3anc | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) Fn NN0 ) |
| 22 | eqidd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` N ) = ( ( IterComp ` ( Ack ` M ) ) ` N ) ) |
|
| 23 | itcovalsucov | |- ( ( ( Ack ` M ) e. _V /\ N e. NN0 /\ ( ( IterComp ` ( Ack ` M ) ) ` N ) = ( ( IterComp ` ( Ack ` M ) ) ` N ) ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) = ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) ) |
|
| 24 | 4 16 22 23 | syl3anc | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) = ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) ) |
| 25 | 24 | fneq1d | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) Fn NN0 <-> ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) Fn NN0 ) ) |
| 26 | 21 25 | mpbird | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) Fn NN0 ) |
| 27 | 1nn0 | |- 1 e. NN0 |
|
| 28 | fvco2 | |- ( ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) Fn NN0 /\ 1 e. NN0 ) -> ( ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ` 1 ) = ( ( Ack ` M ) ` ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) ) |
|
| 29 | 26 27 28 | sylancl | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ` 1 ) = ( ( Ack ` M ) ` ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) ) |
| 30 | 9 29 | eqtrd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) ` 1 ) = ( ( Ack ` M ) ` ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) ) |
| 31 | ackvalsuc1 | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` N ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) |
|
| 32 | 31 | eqcomd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) = ( ( Ack ` ( M + 1 ) ) ` N ) ) |
| 33 | 32 | fveq2d | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` M ) ` ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) = ( ( Ack ` M ) ` ( ( Ack ` ( M + 1 ) ) ` N ) ) ) |
| 34 | 3 30 33 | 3eqtrd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` ( N + 1 ) ) = ( ( Ack ` M ) ` ( ( Ack ` ( M + 1 ) ) ` N ) ) ) |