This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at a successor of the first argument and an arbitrary second argument. (Contributed by Thierry Arnoux, 28-Apr-2024) (Revised by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackvalsuc1 | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` N ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackvalsuc1mpt | |- ( M e. NN0 -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
|
| 2 | 1 | adantr | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
| 3 | fvoveq1 | |- ( n = N -> ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) |
|
| 4 | 3 | fveq1d | |- ( n = N -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) |
| 5 | 4 | adantl | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ n = N ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) |
| 6 | simpr | |- ( ( M e. NN0 /\ N e. NN0 ) -> N e. NN0 ) |
|
| 7 | fvexd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) e. _V ) |
|
| 8 | 2 5 6 7 | fvmptd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` N ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) |