This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at (0,0), (0,1), (0,2). (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval0012 | |- <. ( ( Ack ` 0 ) ` 0 ) , ( ( Ack ` 0 ) ` 1 ) , ( ( Ack ` 0 ) ` 2 ) >. = <. 1 , 2 , 3 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval0 | |- ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) |
|
| 2 | oveq1 | |- ( n = 0 -> ( n + 1 ) = ( 0 + 1 ) ) |
|
| 3 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 4 | 2 3 | eqtrdi | |- ( n = 0 -> ( n + 1 ) = 1 ) |
| 5 | 0nn0 | |- 0 e. NN0 |
|
| 6 | 5 | a1i | |- ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> 0 e. NN0 ) |
| 7 | 1nn0 | |- 1 e. NN0 |
|
| 8 | 7 | a1i | |- ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> 1 e. NN0 ) |
| 9 | 1 4 6 8 | fvmptd3 | |- ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> ( ( Ack ` 0 ) ` 0 ) = 1 ) |
| 10 | oveq1 | |- ( n = 1 -> ( n + 1 ) = ( 1 + 1 ) ) |
|
| 11 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 12 | 10 11 | eqtrdi | |- ( n = 1 -> ( n + 1 ) = 2 ) |
| 13 | 2nn0 | |- 2 e. NN0 |
|
| 14 | 13 | a1i | |- ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> 2 e. NN0 ) |
| 15 | 1 12 8 14 | fvmptd3 | |- ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> ( ( Ack ` 0 ) ` 1 ) = 2 ) |
| 16 | oveq1 | |- ( n = 2 -> ( n + 1 ) = ( 2 + 1 ) ) |
|
| 17 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 18 | 16 17 | eqtrdi | |- ( n = 2 -> ( n + 1 ) = 3 ) |
| 19 | 3nn0 | |- 3 e. NN0 |
|
| 20 | 19 | a1i | |- ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> 3 e. NN0 ) |
| 21 | 1 18 14 20 | fvmptd3 | |- ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> ( ( Ack ` 0 ) ` 2 ) = 3 ) |
| 22 | 9 15 21 | oteq123d | |- ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> <. ( ( Ack ` 0 ) ` 0 ) , ( ( Ack ` 0 ) ` 1 ) , ( ( Ack ` 0 ) ` 2 ) >. = <. 1 , 2 , 3 >. ) |
| 23 | 1 22 | ax-mp | |- <. ( ( Ack ` 0 ) ` 0 ) , ( ( Ack ` 0 ) ` 1 ) , ( ( Ack ` 0 ) ` 2 ) >. = <. 1 , 2 , 3 >. |