This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at the successors. This is the third equation of Péter's definition of the Ackermann function. (Contributed by AV, 8-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackvalsucsucval | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( Ack ‘ 𝑀 ) ‘ ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 2 | ackvalsuc1 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁 + 1 ) + 1 ) ) ‘ 1 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁 + 1 ) + 1 ) ) ‘ 1 ) ) |
| 4 | fvexd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( Ack ‘ 𝑀 ) ∈ V ) | |
| 5 | 1 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 6 | eqidd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ) | |
| 7 | itcovalsucov | ⊢ ( ( ( Ack ‘ 𝑀 ) ∈ V ∧ ( 𝑁 + 1 ) ∈ ℕ0 ∧ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ) → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁 + 1 ) + 1 ) ) = ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ) ) | |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁 + 1 ) + 1 ) ) = ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 9 | 8 | fveq1d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁 + 1 ) + 1 ) ) ‘ 1 ) = ( ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ) ‘ 1 ) ) |
| 10 | ackfnnn0 | ⊢ ( 𝑀 ∈ ℕ0 → ( Ack ‘ 𝑀 ) Fn ℕ0 ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( Ack ‘ 𝑀 ) Fn ℕ0 ) |
| 12 | nn0ex | ⊢ ℕ0 ∈ V | |
| 13 | 12 | a1i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ℕ0 ∈ V ) |
| 14 | ackendofnn0 | ⊢ ( 𝑀 ∈ ℕ0 → ( Ack ‘ 𝑀 ) : ℕ0 ⟶ ℕ0 ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( Ack ‘ 𝑀 ) : ℕ0 ⟶ ℕ0 ) |
| 16 | simpr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 17 | 13 15 16 | itcovalendof | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) : ℕ0 ⟶ ℕ0 ) |
| 18 | 17 | ffnd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) Fn ℕ0 ) |
| 19 | 17 | frnd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ran ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ⊆ ℕ0 ) |
| 20 | fnco | ⊢ ( ( ( Ack ‘ 𝑀 ) Fn ℕ0 ∧ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) Fn ℕ0 ∧ ran ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ⊆ ℕ0 ) → ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) Fn ℕ0 ) | |
| 21 | 11 18 19 20 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) Fn ℕ0 ) |
| 22 | eqidd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) | |
| 23 | itcovalsucov | ⊢ ( ( ( Ack ‘ 𝑀 ) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) ) | |
| 24 | 4 16 22 23 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) ) |
| 25 | 24 | fneq1d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) Fn ℕ0 ↔ ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) Fn ℕ0 ) ) |
| 26 | 21 25 | mpbird | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) Fn ℕ0 ) |
| 27 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 28 | fvco2 | ⊢ ( ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) Fn ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ) ‘ 1 ) = ( ( Ack ‘ 𝑀 ) ‘ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) ) | |
| 29 | 26 27 28 | sylancl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( Ack ‘ 𝑀 ) ∘ ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ) ‘ 1 ) = ( ( Ack ‘ 𝑀 ) ‘ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) ) |
| 30 | 9 29 | eqtrd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁 + 1 ) + 1 ) ) ‘ 1 ) = ( ( Ack ‘ 𝑀 ) ‘ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) ) |
| 31 | ackvalsuc1 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ 𝑁 ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) | |
| 32 | 31 | eqcomd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) = ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ 𝑁 ) ) |
| 33 | 32 | fveq2d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( Ack ‘ 𝑀 ) ‘ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) = ( ( Ack ‘ 𝑀 ) ‘ ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ 𝑁 ) ) ) |
| 34 | 3 30 33 | 3eqtrd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( Ack ‘ 𝑀 ) ‘ ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ 𝑁 ) ) ) |