This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at any nonnegative integer is an endofunction on the nonnegative integers. (Contributed by AV, 8-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackendofnn0 | |- ( M e. NN0 -> ( Ack ` M ) : NN0 --> NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = 0 -> ( Ack ` x ) = ( Ack ` 0 ) ) |
|
| 2 | 1 | feq1d | |- ( x = 0 -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` 0 ) : NN0 --> NN0 ) ) |
| 3 | fveq2 | |- ( x = y -> ( Ack ` x ) = ( Ack ` y ) ) |
|
| 4 | 3 | feq1d | |- ( x = y -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` y ) : NN0 --> NN0 ) ) |
| 5 | fveq2 | |- ( x = ( y + 1 ) -> ( Ack ` x ) = ( Ack ` ( y + 1 ) ) ) |
|
| 6 | 5 | feq1d | |- ( x = ( y + 1 ) -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` ( y + 1 ) ) : NN0 --> NN0 ) ) |
| 7 | fveq2 | |- ( x = M -> ( Ack ` x ) = ( Ack ` M ) ) |
|
| 8 | 7 | feq1d | |- ( x = M -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` M ) : NN0 --> NN0 ) ) |
| 9 | ackval0 | |- ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) |
|
| 10 | peano2nn0 | |- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
|
| 11 | 9 10 | fmpti | |- ( Ack ` 0 ) : NN0 --> NN0 |
| 12 | nn0ex | |- NN0 e. _V |
|
| 13 | 12 | a1i | |- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> NN0 e. _V ) |
| 14 | simplr | |- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( Ack ` y ) : NN0 --> NN0 ) |
|
| 15 | 10 | adantl | |- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( n + 1 ) e. NN0 ) |
| 16 | 13 14 15 | itcovalendof | |- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) : NN0 --> NN0 ) |
| 17 | 1nn0 | |- 1 e. NN0 |
|
| 18 | ffvelcdm | |- ( ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) : NN0 --> NN0 /\ 1 e. NN0 ) -> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) e. NN0 ) |
|
| 19 | 16 17 18 | sylancl | |- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) e. NN0 ) |
| 20 | eqid | |- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) |
|
| 21 | 19 20 | fmptd | |- ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) : NN0 --> NN0 ) |
| 22 | ackvalsuc1mpt | |- ( y e. NN0 -> ( Ack ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
|
| 23 | 22 | adantr | |- ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( Ack ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
| 24 | 23 | feq1d | |- ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( ( Ack ` ( y + 1 ) ) : NN0 --> NN0 <-> ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) : NN0 --> NN0 ) ) |
| 25 | 21 24 | mpbird | |- ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( Ack ` ( y + 1 ) ) : NN0 --> NN0 ) |
| 26 | 25 | ex | |- ( y e. NN0 -> ( ( Ack ` y ) : NN0 --> NN0 -> ( Ack ` ( y + 1 ) ) : NN0 --> NN0 ) ) |
| 27 | 2 4 6 8 11 26 | nn0ind | |- ( M e. NN0 -> ( Ack ` M ) : NN0 --> NN0 ) |