This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itcovalsucov | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( F o. G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalsuc | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( G ( g e. _V , j e. _V |-> ( F o. g ) ) F ) ) |
|
| 2 | eqidd | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( g e. _V , j e. _V |-> ( F o. g ) ) = ( g e. _V , j e. _V |-> ( F o. g ) ) ) |
|
| 3 | coeq2 | |- ( g = G -> ( F o. g ) = ( F o. G ) ) |
|
| 4 | 3 | ad2antrl | |- ( ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) /\ ( g = G /\ j = F ) ) -> ( F o. g ) = ( F o. G ) ) |
| 5 | id | |- ( G = ( ( IterComp ` F ) ` Y ) -> G = ( ( IterComp ` F ) ` Y ) ) |
|
| 6 | fvex | |- ( ( IterComp ` F ) ` Y ) e. _V |
|
| 7 | 5 6 | eqeltrdi | |- ( G = ( ( IterComp ` F ) ` Y ) -> G e. _V ) |
| 8 | 7 | eqcoms | |- ( ( ( IterComp ` F ) ` Y ) = G -> G e. _V ) |
| 9 | 8 | 3ad2ant3 | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> G e. _V ) |
| 10 | elex | |- ( F e. V -> F e. _V ) |
|
| 11 | 10 | 3ad2ant1 | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> F e. _V ) |
| 12 | 8 | anim2i | |- ( ( F e. V /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( F e. V /\ G e. _V ) ) |
| 13 | 12 | 3adant2 | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( F e. V /\ G e. _V ) ) |
| 14 | coexg | |- ( ( F e. V /\ G e. _V ) -> ( F o. G ) e. _V ) |
|
| 15 | 13 14 | syl | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( F o. G ) e. _V ) |
| 16 | 2 4 9 11 15 | ovmpod | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( G ( g e. _V , j e. _V |-> ( F o. g ) ) F ) = ( F o. G ) ) |
| 17 | 1 16 | eqtrd | |- ( ( F e. V /\ Y e. NN0 /\ ( ( IterComp ` F ) ` Y ) = G ) -> ( ( IterComp ` F ) ` ( Y + 1 ) ) = ( F o. G ) ) |