This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that returns the n-th iterate of the "times 2 plus a constant" function with regard to composition. (Contributed by AV, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itcovalt2.f | |- F = ( n e. NN0 |-> ( ( 2 x. n ) + C ) ) |
|
| Assertion | itcovalt2 | |- ( ( I e. NN0 /\ C e. NN0 ) -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalt2.f | |- F = ( n e. NN0 |-> ( ( 2 x. n ) + C ) ) |
|
| 2 | fveq2 | |- ( x = 0 -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` 0 ) ) |
|
| 3 | oveq2 | |- ( x = 0 -> ( 2 ^ x ) = ( 2 ^ 0 ) ) |
|
| 4 | 3 | oveq2d | |- ( x = 0 -> ( ( n + C ) x. ( 2 ^ x ) ) = ( ( n + C ) x. ( 2 ^ 0 ) ) ) |
| 5 | 4 | oveq1d | |- ( x = 0 -> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) = ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) |
| 6 | 5 | mpteq2dv | |- ( x = 0 -> ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) |
| 7 | 2 6 | eqeq12d | |- ( x = 0 -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) <-> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) ) |
| 8 | 7 | imbi2d | |- ( x = 0 -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) ) <-> ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) ) ) |
| 9 | fveq2 | |- ( x = y -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` y ) ) |
|
| 10 | oveq2 | |- ( x = y -> ( 2 ^ x ) = ( 2 ^ y ) ) |
|
| 11 | 10 | oveq2d | |- ( x = y -> ( ( n + C ) x. ( 2 ^ x ) ) = ( ( n + C ) x. ( 2 ^ y ) ) ) |
| 12 | 11 | oveq1d | |- ( x = y -> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) = ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) |
| 13 | 12 | mpteq2dv | |- ( x = y -> ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) |
| 14 | 9 13 | eqeq12d | |- ( x = y -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) <-> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) |
| 15 | 14 | imbi2d | |- ( x = y -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) ) <-> ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) ) |
| 16 | fveq2 | |- ( x = ( y + 1 ) -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` ( y + 1 ) ) ) |
|
| 17 | oveq2 | |- ( x = ( y + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( y + 1 ) ) ) |
|
| 18 | 17 | oveq2d | |- ( x = ( y + 1 ) -> ( ( n + C ) x. ( 2 ^ x ) ) = ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) ) |
| 19 | 18 | oveq1d | |- ( x = ( y + 1 ) -> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) = ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) |
| 20 | 19 | mpteq2dv | |- ( x = ( y + 1 ) -> ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) |
| 21 | 16 20 | eqeq12d | |- ( x = ( y + 1 ) -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) <-> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) |
| 22 | 21 | imbi2d | |- ( x = ( y + 1 ) -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) ) <-> ( C e. NN0 -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) ) |
| 23 | fveq2 | |- ( x = I -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` I ) ) |
|
| 24 | oveq2 | |- ( x = I -> ( 2 ^ x ) = ( 2 ^ I ) ) |
|
| 25 | 24 | oveq2d | |- ( x = I -> ( ( n + C ) x. ( 2 ^ x ) ) = ( ( n + C ) x. ( 2 ^ I ) ) ) |
| 26 | 25 | oveq1d | |- ( x = I -> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) = ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) |
| 27 | 26 | mpteq2dv | |- ( x = I -> ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) |
| 28 | 23 27 | eqeq12d | |- ( x = I -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) <-> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) ) |
| 29 | 28 | imbi2d | |- ( x = I -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) ) <-> ( C e. NN0 -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) ) ) |
| 30 | 1 | itcovalt2lem1 | |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) |
| 31 | pm2.27 | |- ( C e. NN0 -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) |
|
| 32 | 31 | adantl | |- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) |
| 33 | 1 | itcovalt2lem2 | |- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) |
| 34 | 32 33 | syld | |- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) |
| 35 | 34 | ex | |- ( y e. NN0 -> ( C e. NN0 -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) ) |
| 36 | 35 | com23 | |- ( y e. NN0 -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( C e. NN0 -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) ) |
| 37 | 8 15 22 29 30 36 | nn0ind | |- ( I e. NN0 -> ( C e. NN0 -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) ) |
| 38 | 37 | imp | |- ( ( I e. NN0 /\ C e. NN0 ) -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) |