This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at 3. (Contributed by AV, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval3 | ⊢ ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 2 | 1 | fveq2i | ⊢ ( Ack ‘ 3 ) = ( Ack ‘ ( 2 + 1 ) ) |
| 3 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 4 | ackvalsuc1mpt | ⊢ ( 2 ∈ ℕ0 → ( Ack ‘ ( 2 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( Ack ‘ ( 2 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) |
| 6 | peano2nn0 | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ0 ) | |
| 7 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 8 | ackval2 | ⊢ ( Ack ‘ 2 ) = ( 𝑖 ∈ ℕ0 ↦ ( ( 2 · 𝑖 ) + 3 ) ) | |
| 9 | 8 | itcovalt2 | ⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ0 ∧ 3 ∈ ℕ0 ) → ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 3 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ) ) |
| 10 | 6 7 9 | sylancl | ⊢ ( 𝑛 ∈ ℕ0 → ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 3 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ) ) |
| 11 | 10 | fveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 3 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ) ‘ 1 ) ) |
| 12 | eqidd | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 3 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ) = ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 3 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ) ) | |
| 13 | oveq1 | ⊢ ( 𝑖 = 1 → ( 𝑖 + 3 ) = ( 1 + 3 ) ) | |
| 14 | 3cn | ⊢ 3 ∈ ℂ | |
| 15 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 16 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 17 | 14 15 16 | addcomli | ⊢ ( 1 + 3 ) = 4 |
| 18 | 13 17 | eqtrdi | ⊢ ( 𝑖 = 1 → ( 𝑖 + 3 ) = 4 ) |
| 19 | 18 | oveq1d | ⊢ ( 𝑖 = 1 → ( ( 𝑖 + 3 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) = ( 4 · ( 2 ↑ ( 𝑛 + 1 ) ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝑖 = 1 → ( ( ( 𝑖 + 3 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) = ( ( 4 · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑖 = 1 ) → ( ( ( 𝑖 + 3 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) = ( ( 4 · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ) |
| 22 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 23 | 22 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 1 ∈ ℕ0 ) |
| 24 | ovexd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ∈ V ) | |
| 25 | 12 21 23 24 | fvmptd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ ( ( ( 𝑖 + 3 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ) ‘ 1 ) = ( ( 4 · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) ) |
| 26 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 27 | 26 | eqcomi | ⊢ 4 = ( 2 ↑ 2 ) |
| 28 | 27 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 4 = ( 2 ↑ 2 ) ) |
| 29 | 28 | oveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( 4 · ( 2 ↑ ( 𝑛 + 1 ) ) ) = ( ( 2 ↑ 2 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) ) |
| 30 | 2cnd | ⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℂ ) | |
| 31 | 3 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 32 | 30 6 31 | expaddd | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 ↑ ( 2 + ( 𝑛 + 1 ) ) ) = ( ( 2 ↑ 2 ) · ( 2 ↑ ( 𝑛 + 1 ) ) ) ) |
| 33 | nn0cn | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) | |
| 34 | 1cnd | ⊢ ( 𝑛 ∈ ℕ0 → 1 ∈ ℂ ) | |
| 35 | 30 33 34 | add12d | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 + ( 𝑛 + 1 ) ) = ( 𝑛 + ( 2 + 1 ) ) ) |
| 36 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 37 | 36 | oveq2i | ⊢ ( 𝑛 + ( 2 + 1 ) ) = ( 𝑛 + 3 ) |
| 38 | 35 37 | eqtrdi | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 + ( 𝑛 + 1 ) ) = ( 𝑛 + 3 ) ) |
| 39 | 38 | oveq2d | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 ↑ ( 2 + ( 𝑛 + 1 ) ) ) = ( 2 ↑ ( 𝑛 + 3 ) ) ) |
| 40 | 29 32 39 | 3eqtr2d | ⊢ ( 𝑛 ∈ ℕ0 → ( 4 · ( 2 ↑ ( 𝑛 + 1 ) ) ) = ( 2 ↑ ( 𝑛 + 3 ) ) ) |
| 41 | 40 | oveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 · ( 2 ↑ ( 𝑛 + 1 ) ) ) − 3 ) = ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) |
| 42 | 11 25 41 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) |
| 43 | 42 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) |
| 44 | 2 5 43 | 3eqtri | ⊢ ( Ack ‘ 3 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 𝑛 + 3 ) ) − 3 ) ) |