This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | |- A = ( AbsVal ` R ) |
|
| abvneg.b | |- B = ( Base ` R ) |
||
| abvrec.z | |- .0. = ( 0g ` R ) |
||
| abvdom.t | |- .x. = ( .r ` R ) |
||
| Assertion | abvdom | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvneg.b | |- B = ( Base ` R ) |
|
| 3 | abvrec.z | |- .0. = ( 0g ` R ) |
|
| 4 | abvdom.t | |- .x. = ( .r ` R ) |
|
| 5 | simp1 | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> F e. A ) |
|
| 6 | simp2l | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> X e. B ) |
|
| 7 | simp3l | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> Y e. B ) |
|
| 8 | 1 2 4 | abvmul | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( F ` ( X .x. Y ) ) = ( ( F ` X ) x. ( F ` Y ) ) ) |
| 9 | 5 6 7 8 | syl3anc | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X .x. Y ) ) = ( ( F ` X ) x. ( F ` Y ) ) ) |
| 10 | 1 2 | abvcl | |- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| 11 | 5 6 10 | syl2anc | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. RR ) |
| 12 | 11 | recnd | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. CC ) |
| 13 | 1 2 | abvcl | |- ( ( F e. A /\ Y e. B ) -> ( F ` Y ) e. RR ) |
| 14 | 5 7 13 | syl2anc | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. RR ) |
| 15 | 14 | recnd | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. CC ) |
| 16 | simp2r | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> X =/= .0. ) |
|
| 17 | 1 2 3 | abvne0 | |- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) =/= 0 ) |
| 18 | 5 6 16 17 | syl3anc | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) =/= 0 ) |
| 19 | simp3r | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> Y =/= .0. ) |
|
| 20 | 1 2 3 | abvne0 | |- ( ( F e. A /\ Y e. B /\ Y =/= .0. ) -> ( F ` Y ) =/= 0 ) |
| 21 | 5 7 19 20 | syl3anc | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) =/= 0 ) |
| 22 | 12 15 18 21 | mulne0d | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( ( F ` X ) x. ( F ` Y ) ) =/= 0 ) |
| 23 | 9 22 | eqnetrd | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X .x. Y ) ) =/= 0 ) |
| 24 | 1 3 | abv0 | |- ( F e. A -> ( F ` .0. ) = 0 ) |
| 25 | 5 24 | syl | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` .0. ) = 0 ) |
| 26 | fveqeq2 | |- ( ( X .x. Y ) = .0. -> ( ( F ` ( X .x. Y ) ) = 0 <-> ( F ` .0. ) = 0 ) ) |
|
| 27 | 25 26 | syl5ibrcom | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( ( X .x. Y ) = .0. -> ( F ` ( X .x. Y ) ) = 0 ) ) |
| 28 | 27 | necon3d | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( ( F ` ( X .x. Y ) ) =/= 0 -> ( X .x. Y ) =/= .0. ) ) |
| 29 | 23 28 | mpd | |- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |