This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in ApostolNT p. 16. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absmulgcd | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( abs ‘ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) | |
| 2 | nn0re | ⊢ ( ( 𝑀 gcd 𝑁 ) ∈ ℕ0 → ( 𝑀 gcd 𝑁 ) ∈ ℝ ) | |
| 3 | nn0ge0 | ⊢ ( ( 𝑀 gcd 𝑁 ) ∈ ℕ0 → 0 ≤ ( 𝑀 gcd 𝑁 ) ) | |
| 4 | 2 3 | absidd | ⊢ ( ( 𝑀 gcd 𝑁 ) ∈ ℕ0 → ( abs ‘ ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) |
| 5 | 1 4 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝐾 ) · ( abs ‘ ( 𝑀 gcd 𝑁 ) ) ) = ( ( abs ‘ 𝐾 ) · ( 𝑀 gcd 𝑁 ) ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝐾 ) · ( abs ‘ ( 𝑀 gcd 𝑁 ) ) ) = ( ( abs ‘ 𝐾 ) · ( 𝑀 gcd 𝑁 ) ) ) |
| 8 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 9 | 1 | nn0cnd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℂ ) |
| 10 | absmul | ⊢ ( ( 𝐾 ∈ ℂ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℂ ) → ( abs ‘ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) = ( ( abs ‘ 𝐾 ) · ( abs ‘ ( 𝑀 gcd 𝑁 ) ) ) ) | |
| 11 | 8 9 10 | syl2an | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( abs ‘ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) = ( ( abs ‘ 𝐾 ) · ( abs ‘ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 12 | 11 | 3impb | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) = ( ( abs ‘ 𝐾 ) · ( abs ‘ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 13 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 14 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 15 | absmul | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( abs ‘ ( 𝐾 · 𝑀 ) ) = ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑀 ) ) ) | |
| 16 | absmul | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( abs ‘ ( 𝐾 · 𝑁 ) ) = ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑁 ) ) ) | |
| 17 | 15 16 | oveqan12d | ⊢ ( ( ( 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ∧ ( 𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) → ( ( abs ‘ ( 𝐾 · 𝑀 ) ) gcd ( abs ‘ ( 𝐾 · 𝑁 ) ) ) = ( ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑀 ) ) gcd ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑁 ) ) ) ) |
| 18 | 17 | 3impdi | ⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( abs ‘ ( 𝐾 · 𝑀 ) ) gcd ( abs ‘ ( 𝐾 · 𝑁 ) ) ) = ( ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑀 ) ) gcd ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑁 ) ) ) ) |
| 19 | 8 13 14 18 | syl3an | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐾 · 𝑀 ) ) gcd ( abs ‘ ( 𝐾 · 𝑁 ) ) ) = ( ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑀 ) ) gcd ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑁 ) ) ) ) |
| 20 | zmulcl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐾 · 𝑀 ) ∈ ℤ ) | |
| 21 | zmulcl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · 𝑁 ) ∈ ℤ ) | |
| 22 | gcdabs | ⊢ ( ( ( 𝐾 · 𝑀 ) ∈ ℤ ∧ ( 𝐾 · 𝑁 ) ∈ ℤ ) → ( ( abs ‘ ( 𝐾 · 𝑀 ) ) gcd ( abs ‘ ( 𝐾 · 𝑁 ) ) ) = ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) | |
| 23 | 20 21 22 | syl2an | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( abs ‘ ( 𝐾 · 𝑀 ) ) gcd ( abs ‘ ( 𝐾 · 𝑁 ) ) ) = ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) |
| 24 | 23 | 3impdi | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐾 · 𝑀 ) ) gcd ( abs ‘ ( 𝐾 · 𝑁 ) ) ) = ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) ) |
| 25 | nn0abscl | ⊢ ( 𝐾 ∈ ℤ → ( abs ‘ 𝐾 ) ∈ ℕ0 ) | |
| 26 | zabscl | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℤ ) | |
| 27 | zabscl | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℤ ) | |
| 28 | mulgcd | ⊢ ( ( ( abs ‘ 𝐾 ) ∈ ℕ0 ∧ ( abs ‘ 𝑀 ) ∈ ℤ ∧ ( abs ‘ 𝑁 ) ∈ ℤ ) → ( ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑀 ) ) gcd ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑁 ) ) ) = ( ( abs ‘ 𝐾 ) · ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) ) | |
| 29 | 25 26 27 28 | syl3an | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑀 ) ) gcd ( ( abs ‘ 𝐾 ) · ( abs ‘ 𝑁 ) ) ) = ( ( abs ‘ 𝐾 ) · ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) ) |
| 30 | 19 24 29 | 3eqtr3d | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( ( abs ‘ 𝐾 ) · ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) ) |
| 31 | gcdabs | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) | |
| 32 | 31 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) = ( 𝑀 gcd 𝑁 ) ) |
| 33 | 32 | oveq2d | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝐾 ) · ( ( abs ‘ 𝑀 ) gcd ( abs ‘ 𝑁 ) ) ) = ( ( abs ‘ 𝐾 ) · ( 𝑀 gcd 𝑁 ) ) ) |
| 34 | 30 33 | eqtrd | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( ( abs ‘ 𝐾 ) · ( 𝑀 gcd 𝑁 ) ) ) |
| 35 | 7 12 34 | 3eqtr4rd | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 · 𝑀 ) gcd ( 𝐾 · 𝑁 ) ) = ( abs ‘ ( 𝐾 · ( 𝑀 gcd 𝑁 ) ) ) ) |