This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part of the logarithm function has absolute value less than pi. (Contributed by Mario Carneiro, 3-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abslogimle | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) <_ _pi ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pire | |- _pi e. RR |
|
| 2 | 1 | a1i | |- ( ( A e. CC /\ A =/= 0 ) -> _pi e. RR ) |
| 3 | 2 | renegcld | |- ( ( A e. CC /\ A =/= 0 ) -> -u _pi e. RR ) |
| 4 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 5 | 4 | imcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 6 | logimcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
|
| 7 | 6 | simpld | |- ( ( A e. CC /\ A =/= 0 ) -> -u _pi < ( Im ` ( log ` A ) ) ) |
| 8 | 3 5 7 | ltled | |- ( ( A e. CC /\ A =/= 0 ) -> -u _pi <_ ( Im ` ( log ` A ) ) ) |
| 9 | 6 | simprd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) <_ _pi ) |
| 10 | 5 2 | absled | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` ( Im ` ( log ` A ) ) ) <_ _pi <-> ( -u _pi <_ ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) ) |
| 11 | 8 9 10 | mpbir2and | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( Im ` ( log ` A ) ) ) <_ _pi ) |