This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Mario Carneiro, 24-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | max0add | |- ( A e. RR -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( abs ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( A e. RR -> 0 e. RR ) |
|
| 2 | id | |- ( A e. RR -> A e. RR ) |
|
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | 3 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
| 5 | 4 | addridd | |- ( ( A e. RR /\ 0 <_ A ) -> ( A + 0 ) = A ) |
| 6 | iftrue | |- ( 0 <_ A -> if ( 0 <_ A , A , 0 ) = A ) |
|
| 7 | 6 | adantl | |- ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ A , A , 0 ) = A ) |
| 8 | le0neg2 | |- ( A e. RR -> ( 0 <_ A <-> -u A <_ 0 ) ) |
|
| 9 | 8 | biimpa | |- ( ( A e. RR /\ 0 <_ A ) -> -u A <_ 0 ) |
| 10 | 9 | adantr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> -u A <_ 0 ) |
| 11 | simpr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> 0 <_ -u A ) |
|
| 12 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 13 | 12 | ad2antrr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> -u A e. RR ) |
| 14 | 0re | |- 0 e. RR |
|
| 15 | letri3 | |- ( ( -u A e. RR /\ 0 e. RR ) -> ( -u A = 0 <-> ( -u A <_ 0 /\ 0 <_ -u A ) ) ) |
|
| 16 | 13 14 15 | sylancl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> ( -u A = 0 <-> ( -u A <_ 0 /\ 0 <_ -u A ) ) ) |
| 17 | 10 11 16 | mpbir2and | |- ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ -u A ) -> -u A = 0 ) |
| 18 | 17 | ifeq1da | |- ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ -u A , -u A , 0 ) = if ( 0 <_ -u A , 0 , 0 ) ) |
| 19 | ifid | |- if ( 0 <_ -u A , 0 , 0 ) = 0 |
|
| 20 | 18 19 | eqtrdi | |- ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ -u A , -u A , 0 ) = 0 ) |
| 21 | 7 20 | oveq12d | |- ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( A + 0 ) ) |
| 22 | absid | |- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
|
| 23 | 5 21 22 | 3eqtr4d | |- ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( abs ` A ) ) |
| 24 | 3 | adantr | |- ( ( A e. RR /\ A <_ 0 ) -> A e. CC ) |
| 25 | 24 | negcld | |- ( ( A e. RR /\ A <_ 0 ) -> -u A e. CC ) |
| 26 | 25 | addlidd | |- ( ( A e. RR /\ A <_ 0 ) -> ( 0 + -u A ) = -u A ) |
| 27 | letri3 | |- ( ( A e. RR /\ 0 e. RR ) -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) |
|
| 28 | 14 27 | mpan2 | |- ( A e. RR -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) |
| 29 | 28 | biimprd | |- ( A e. RR -> ( ( A <_ 0 /\ 0 <_ A ) -> A = 0 ) ) |
| 30 | 29 | impl | |- ( ( ( A e. RR /\ A <_ 0 ) /\ 0 <_ A ) -> A = 0 ) |
| 31 | 30 | ifeq1da | |- ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = if ( 0 <_ A , 0 , 0 ) ) |
| 32 | ifid | |- if ( 0 <_ A , 0 , 0 ) = 0 |
|
| 33 | 31 32 | eqtrdi | |- ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = 0 ) |
| 34 | le0neg1 | |- ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) |
|
| 35 | 34 | biimpa | |- ( ( A e. RR /\ A <_ 0 ) -> 0 <_ -u A ) |
| 36 | 35 | iftrued | |- ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ -u A , -u A , 0 ) = -u A ) |
| 37 | 33 36 | oveq12d | |- ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( 0 + -u A ) ) |
| 38 | absnid | |- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
|
| 39 | 26 37 38 | 3eqtr4d | |- ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( abs ` A ) ) |
| 40 | 1 2 23 39 | lecasei | |- ( A e. RR -> ( if ( 0 <_ A , A , 0 ) + if ( 0 <_ -u A , -u A , 0 ) ) = ( abs ` A ) ) |