This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for group multiplication and division. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | |- X = ran G |
|
| abldiv.3 | |- D = ( /g ` G ) |
||
| Assertion | ablomuldiv | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( A D C ) G B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | |- X = ran G |
|
| 2 | abldiv.3 | |- D = ( /g ` G ) |
|
| 3 | 1 | ablocom | |- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) ) |
| 4 | 3 | 3adant3r3 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G B ) = ( B G A ) ) |
| 5 | 4 | oveq1d | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( B G A ) D C ) ) |
| 6 | 3ancoma | |- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( B e. X /\ A e. X /\ C e. X ) ) |
|
| 7 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 8 | 1 2 | grpomuldivass | |- ( ( G e. GrpOp /\ ( B e. X /\ A e. X /\ C e. X ) ) -> ( ( B G A ) D C ) = ( B G ( A D C ) ) ) |
| 9 | 7 8 | sylan | |- ( ( G e. AbelOp /\ ( B e. X /\ A e. X /\ C e. X ) ) -> ( ( B G A ) D C ) = ( B G ( A D C ) ) ) |
| 10 | 6 9 | sylan2b | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( B G A ) D C ) = ( B G ( A D C ) ) ) |
| 11 | simpr2 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 12 | 1 2 | grpodivcl | |- ( ( G e. GrpOp /\ A e. X /\ C e. X ) -> ( A D C ) e. X ) |
| 13 | 7 12 | syl3an1 | |- ( ( G e. AbelOp /\ A e. X /\ C e. X ) -> ( A D C ) e. X ) |
| 14 | 13 | 3adant3r2 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D C ) e. X ) |
| 15 | 11 14 | jca | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B e. X /\ ( A D C ) e. X ) ) |
| 16 | 1 | ablocom | |- ( ( G e. AbelOp /\ B e. X /\ ( A D C ) e. X ) -> ( B G ( A D C ) ) = ( ( A D C ) G B ) ) |
| 17 | 16 | 3expb | |- ( ( G e. AbelOp /\ ( B e. X /\ ( A D C ) e. X ) ) -> ( B G ( A D C ) ) = ( ( A D C ) G B ) ) |
| 18 | 15 17 | syldan | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B G ( A D C ) ) = ( ( A D C ) G B ) ) |
| 19 | 5 10 18 | 3eqtrd | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( A D C ) G B ) ) |