This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative-type law for multiplication and division. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdivf.1 | |- X = ran G |
|
| grpdivf.3 | |- D = ( /g ` G ) |
||
| Assertion | grpomuldivass | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( A G ( B D C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | |- X = ran G |
|
| 2 | grpdivf.3 | |- D = ( /g ` G ) |
|
| 3 | simpr1 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 4 | simpr2 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 5 | eqid | |- ( inv ` G ) = ( inv ` G ) |
|
| 6 | 1 5 | grpoinvcl | |- ( ( G e. GrpOp /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) |
| 7 | 6 | 3ad2antr3 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` C ) e. X ) |
| 8 | 3 4 7 | 3jca | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) |
| 9 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) -> ( ( A G B ) G ( ( inv ` G ) ` C ) ) = ( A G ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 10 | 8 9 | syldan | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G ( ( inv ` G ) ` C ) ) = ( A G ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 11 | simpl | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) |
|
| 12 | 1 | grpocl | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 13 | 12 | 3adant3r3 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G B ) e. X ) |
| 14 | simpr3 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
|
| 15 | 1 5 2 | grpodivval | |- ( ( G e. GrpOp /\ ( A G B ) e. X /\ C e. X ) -> ( ( A G B ) D C ) = ( ( A G B ) G ( ( inv ` G ) ` C ) ) ) |
| 16 | 11 13 14 15 | syl3anc | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( A G B ) G ( ( inv ` G ) ` C ) ) ) |
| 17 | 1 5 2 | grpodivval | |- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
| 18 | 17 | 3adant3r1 | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
| 19 | 18 | oveq2d | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( B D C ) ) = ( A G ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 20 | 10 16 19 | 3eqtr4d | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( A G ( B D C ) ) ) |