This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abl4pnp.1 | ⊢ 𝑋 = ran 𝐺 | |
| abl4pnp.2 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | ablo4pnp | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abl4pnp.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | abl4pnp.2 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 3 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) | |
| 4 | 1 2 | ablomuldiv | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| 5 | 3 4 | sylan2br | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| 6 | 5 | adantrrr | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) 𝐷 𝐹 ) = ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) ) |
| 8 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 9 | 1 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 10 | 9 | 3expib | ⊢ ( 𝐺 ∈ GrpOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝐺 ∈ AbelOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) |
| 12 | 11 | anim1d | ⊢ ( 𝐺 ∈ AbelOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) ) |
| 13 | 3anass | ⊢ ( ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ↔ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) | |
| 14 | 12 13 | imbitrrdi | ⊢ ( 𝐺 ∈ AbelOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
| 15 | 14 | imp | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) |
| 16 | 1 2 | ablodivdiv4 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) ) |
| 17 | 15 16 | syldan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) ) |
| 18 | 1 2 | grpodivcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
| 19 | 18 | 3expib | ⊢ ( 𝐺 ∈ GrpOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) ) |
| 20 | 19 | anim1d | ⊢ ( 𝐺 ∈ GrpOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) ) |
| 21 | an4 | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) | |
| 22 | 3anass | ⊢ ( ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ↔ ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) | |
| 23 | 20 21 22 | 3imtr4g | ⊢ ( 𝐺 ∈ GrpOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) |
| 25 | 1 2 | grpomuldivass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
| 26 | 24 25 | syldan | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
| 27 | 8 26 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
| 28 | 7 17 27 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |