This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of three and two is six. In contrast to 3lcm2e6 , this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 27-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3lcm2e6woprm | |- ( 3 lcm 2 ) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn | |- 3 e. CC |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | 1 2 | mulcli | |- ( 3 x. 2 ) e. CC |
| 4 | 3z | |- 3 e. ZZ |
|
| 5 | 2z | |- 2 e. ZZ |
|
| 6 | lcmcl | |- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> ( 3 lcm 2 ) e. NN0 ) |
|
| 7 | 6 | nn0cnd | |- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> ( 3 lcm 2 ) e. CC ) |
| 8 | 4 5 7 | mp2an | |- ( 3 lcm 2 ) e. CC |
| 9 | 4 5 | pm3.2i | |- ( 3 e. ZZ /\ 2 e. ZZ ) |
| 10 | 2ne0 | |- 2 =/= 0 |
|
| 11 | 10 | neii | |- -. 2 = 0 |
| 12 | 11 | intnan | |- -. ( 3 = 0 /\ 2 = 0 ) |
| 13 | gcdn0cl | |- ( ( ( 3 e. ZZ /\ 2 e. ZZ ) /\ -. ( 3 = 0 /\ 2 = 0 ) ) -> ( 3 gcd 2 ) e. NN ) |
|
| 14 | 13 | nncnd | |- ( ( ( 3 e. ZZ /\ 2 e. ZZ ) /\ -. ( 3 = 0 /\ 2 = 0 ) ) -> ( 3 gcd 2 ) e. CC ) |
| 15 | 9 12 14 | mp2an | |- ( 3 gcd 2 ) e. CC |
| 16 | 9 12 13 | mp2an | |- ( 3 gcd 2 ) e. NN |
| 17 | 16 | nnne0i | |- ( 3 gcd 2 ) =/= 0 |
| 18 | 15 17 | pm3.2i | |- ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) |
| 19 | 3nn | |- 3 e. NN |
|
| 20 | 2nn | |- 2 e. NN |
|
| 21 | 19 20 | pm3.2i | |- ( 3 e. NN /\ 2 e. NN ) |
| 22 | lcmgcdnn | |- ( ( 3 e. NN /\ 2 e. NN ) -> ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) = ( 3 x. 2 ) ) |
|
| 23 | 22 | eqcomd | |- ( ( 3 e. NN /\ 2 e. NN ) -> ( 3 x. 2 ) = ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) ) |
| 24 | 21 23 | mp1i | |- ( ( ( 3 x. 2 ) e. CC /\ ( 3 lcm 2 ) e. CC /\ ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) ) -> ( 3 x. 2 ) = ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) ) |
| 25 | divmul3 | |- ( ( ( 3 x. 2 ) e. CC /\ ( 3 lcm 2 ) e. CC /\ ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) ) -> ( ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) = ( 3 lcm 2 ) <-> ( 3 x. 2 ) = ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) ) ) |
|
| 26 | 24 25 | mpbird | |- ( ( ( 3 x. 2 ) e. CC /\ ( 3 lcm 2 ) e. CC /\ ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) ) -> ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) = ( 3 lcm 2 ) ) |
| 27 | 26 | eqcomd | |- ( ( ( 3 x. 2 ) e. CC /\ ( 3 lcm 2 ) e. CC /\ ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) ) -> ( 3 lcm 2 ) = ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) ) |
| 28 | 3 8 18 27 | mp3an | |- ( 3 lcm 2 ) = ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) |
| 29 | gcdcom | |- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> ( 3 gcd 2 ) = ( 2 gcd 3 ) ) |
|
| 30 | 4 5 29 | mp2an | |- ( 3 gcd 2 ) = ( 2 gcd 3 ) |
| 31 | 1z | |- 1 e. ZZ |
|
| 32 | gcdid | |- ( 1 e. ZZ -> ( 1 gcd 1 ) = ( abs ` 1 ) ) |
|
| 33 | 31 32 | ax-mp | |- ( 1 gcd 1 ) = ( abs ` 1 ) |
| 34 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 35 | 33 34 | eqtr2i | |- 1 = ( 1 gcd 1 ) |
| 36 | gcdadd | |- ( ( 1 e. ZZ /\ 1 e. ZZ ) -> ( 1 gcd 1 ) = ( 1 gcd ( 1 + 1 ) ) ) |
|
| 37 | 31 31 36 | mp2an | |- ( 1 gcd 1 ) = ( 1 gcd ( 1 + 1 ) ) |
| 38 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 39 | 38 | oveq2i | |- ( 1 gcd ( 1 + 1 ) ) = ( 1 gcd 2 ) |
| 40 | 35 37 39 | 3eqtri | |- 1 = ( 1 gcd 2 ) |
| 41 | gcdcom | |- ( ( 1 e. ZZ /\ 2 e. ZZ ) -> ( 1 gcd 2 ) = ( 2 gcd 1 ) ) |
|
| 42 | 31 5 41 | mp2an | |- ( 1 gcd 2 ) = ( 2 gcd 1 ) |
| 43 | gcdadd | |- ( ( 2 e. ZZ /\ 1 e. ZZ ) -> ( 2 gcd 1 ) = ( 2 gcd ( 1 + 2 ) ) ) |
|
| 44 | 5 31 43 | mp2an | |- ( 2 gcd 1 ) = ( 2 gcd ( 1 + 2 ) ) |
| 45 | 40 42 44 | 3eqtri | |- 1 = ( 2 gcd ( 1 + 2 ) ) |
| 46 | 1p2e3 | |- ( 1 + 2 ) = 3 |
|
| 47 | 46 | oveq2i | |- ( 2 gcd ( 1 + 2 ) ) = ( 2 gcd 3 ) |
| 48 | 45 47 | eqtr2i | |- ( 2 gcd 3 ) = 1 |
| 49 | 30 48 | eqtri | |- ( 3 gcd 2 ) = 1 |
| 50 | 49 | oveq2i | |- ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) = ( ( 3 x. 2 ) / 1 ) |
| 51 | 3t2e6 | |- ( 3 x. 2 ) = 6 |
|
| 52 | 51 | oveq1i | |- ( ( 3 x. 2 ) / 1 ) = ( 6 / 1 ) |
| 53 | 6cn | |- 6 e. CC |
|
| 54 | 53 | div1i | |- ( 6 / 1 ) = 6 |
| 55 | 52 54 | eqtri | |- ( ( 3 x. 2 ) / 1 ) = 6 |
| 56 | 28 50 55 | 3eqtri | |- ( 3 lcm 2 ) = 6 |