This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 6lcm4e12 | |- ( 6 lcm 4 ) = ; 1 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn | |- 6 e. CC |
|
| 2 | 4cn | |- 4 e. CC |
|
| 3 | 1 2 | mulcli | |- ( 6 x. 4 ) e. CC |
| 4 | 6nn0 | |- 6 e. NN0 |
|
| 5 | 4 | nn0zi | |- 6 e. ZZ |
| 6 | 4z | |- 4 e. ZZ |
|
| 7 | lcmcl | |- ( ( 6 e. ZZ /\ 4 e. ZZ ) -> ( 6 lcm 4 ) e. NN0 ) |
|
| 8 | 7 | nn0cnd | |- ( ( 6 e. ZZ /\ 4 e. ZZ ) -> ( 6 lcm 4 ) e. CC ) |
| 9 | 5 6 8 | mp2an | |- ( 6 lcm 4 ) e. CC |
| 10 | gcdcl | |- ( ( 6 e. ZZ /\ 4 e. ZZ ) -> ( 6 gcd 4 ) e. NN0 ) |
|
| 11 | 10 | nn0cnd | |- ( ( 6 e. ZZ /\ 4 e. ZZ ) -> ( 6 gcd 4 ) e. CC ) |
| 12 | 5 6 11 | mp2an | |- ( 6 gcd 4 ) e. CC |
| 13 | 5 6 | pm3.2i | |- ( 6 e. ZZ /\ 4 e. ZZ ) |
| 14 | 4ne0 | |- 4 =/= 0 |
|
| 15 | 14 | neii | |- -. 4 = 0 |
| 16 | 15 | intnan | |- -. ( 6 = 0 /\ 4 = 0 ) |
| 17 | gcdn0cl | |- ( ( ( 6 e. ZZ /\ 4 e. ZZ ) /\ -. ( 6 = 0 /\ 4 = 0 ) ) -> ( 6 gcd 4 ) e. NN ) |
|
| 18 | 13 16 17 | mp2an | |- ( 6 gcd 4 ) e. NN |
| 19 | 18 | nnne0i | |- ( 6 gcd 4 ) =/= 0 |
| 20 | 12 19 | pm3.2i | |- ( ( 6 gcd 4 ) e. CC /\ ( 6 gcd 4 ) =/= 0 ) |
| 21 | 6nn | |- 6 e. NN |
|
| 22 | 4nn | |- 4 e. NN |
|
| 23 | 21 22 | pm3.2i | |- ( 6 e. NN /\ 4 e. NN ) |
| 24 | lcmgcdnn | |- ( ( 6 e. NN /\ 4 e. NN ) -> ( ( 6 lcm 4 ) x. ( 6 gcd 4 ) ) = ( 6 x. 4 ) ) |
|
| 25 | 23 24 | mp1i | |- ( ( ( 6 x. 4 ) e. CC /\ ( 6 lcm 4 ) e. CC /\ ( ( 6 gcd 4 ) e. CC /\ ( 6 gcd 4 ) =/= 0 ) ) -> ( ( 6 lcm 4 ) x. ( 6 gcd 4 ) ) = ( 6 x. 4 ) ) |
| 26 | 25 | eqcomd | |- ( ( ( 6 x. 4 ) e. CC /\ ( 6 lcm 4 ) e. CC /\ ( ( 6 gcd 4 ) e. CC /\ ( 6 gcd 4 ) =/= 0 ) ) -> ( 6 x. 4 ) = ( ( 6 lcm 4 ) x. ( 6 gcd 4 ) ) ) |
| 27 | divmul3 | |- ( ( ( 6 x. 4 ) e. CC /\ ( 6 lcm 4 ) e. CC /\ ( ( 6 gcd 4 ) e. CC /\ ( 6 gcd 4 ) =/= 0 ) ) -> ( ( ( 6 x. 4 ) / ( 6 gcd 4 ) ) = ( 6 lcm 4 ) <-> ( 6 x. 4 ) = ( ( 6 lcm 4 ) x. ( 6 gcd 4 ) ) ) ) |
|
| 28 | 26 27 | mpbird | |- ( ( ( 6 x. 4 ) e. CC /\ ( 6 lcm 4 ) e. CC /\ ( ( 6 gcd 4 ) e. CC /\ ( 6 gcd 4 ) =/= 0 ) ) -> ( ( 6 x. 4 ) / ( 6 gcd 4 ) ) = ( 6 lcm 4 ) ) |
| 29 | 28 | eqcomd | |- ( ( ( 6 x. 4 ) e. CC /\ ( 6 lcm 4 ) e. CC /\ ( ( 6 gcd 4 ) e. CC /\ ( 6 gcd 4 ) =/= 0 ) ) -> ( 6 lcm 4 ) = ( ( 6 x. 4 ) / ( 6 gcd 4 ) ) ) |
| 30 | 3 9 20 29 | mp3an | |- ( 6 lcm 4 ) = ( ( 6 x. 4 ) / ( 6 gcd 4 ) ) |
| 31 | 6gcd4e2 | |- ( 6 gcd 4 ) = 2 |
|
| 32 | 31 | oveq2i | |- ( ( 6 x. 4 ) / ( 6 gcd 4 ) ) = ( ( 6 x. 4 ) / 2 ) |
| 33 | 2cn | |- 2 e. CC |
|
| 34 | 2ne0 | |- 2 =/= 0 |
|
| 35 | 1 2 33 34 | divassi | |- ( ( 6 x. 4 ) / 2 ) = ( 6 x. ( 4 / 2 ) ) |
| 36 | 4div2e2 | |- ( 4 / 2 ) = 2 |
|
| 37 | 36 | oveq2i | |- ( 6 x. ( 4 / 2 ) ) = ( 6 x. 2 ) |
| 38 | 6t2e12 | |- ( 6 x. 2 ) = ; 1 2 |
|
| 39 | 35 37 38 | 3eqtri | |- ( ( 6 x. 4 ) / 2 ) = ; 1 2 |
| 40 | 30 32 39 | 3eqtri | |- ( 6 lcm 4 ) = ; 1 2 |