This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1resf1 | |- ( ( F : A -1-1-> B /\ C C_ A /\ ( F |` C ) : C --> D ) -> ( F |` C ) : C -1-1-> D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ssres | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-> B ) |
|
| 2 | 1 | 3adant3 | |- ( ( F : A -1-1-> B /\ C C_ A /\ ( F |` C ) : C --> D ) -> ( F |` C ) : C -1-1-> B ) |
| 3 | frn | |- ( ( F |` C ) : C --> D -> ran ( F |` C ) C_ D ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( F : A -1-1-> B /\ C C_ A /\ ( F |` C ) : C --> D ) -> ran ( F |` C ) C_ D ) |
| 5 | f1ssr | |- ( ( ( F |` C ) : C -1-1-> B /\ ran ( F |` C ) C_ D ) -> ( F |` C ) : C -1-1-> D ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( F : A -1-1-> B /\ C C_ A /\ ( F |` C ) : C --> D ) -> ( F |` C ) : C -1-1-> D ) |