This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | |- ( ph -> F : A --> B ) |
|
| fcores.e | |- E = ( ran F i^i C ) |
||
| fcores.p | |- P = ( `' F " C ) |
||
| fcores.x | |- X = ( F |` P ) |
||
| fcores.g | |- ( ph -> G : C --> D ) |
||
| fcores.y | |- Y = ( G |` E ) |
||
| Assertion | fcoresf1ob | |- ( ph -> ( ( G o. F ) : P -1-1-onto-> D <-> ( X : P -1-1-> E /\ Y : E -1-1-onto-> D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | |- ( ph -> F : A --> B ) |
|
| 2 | fcores.e | |- E = ( ran F i^i C ) |
|
| 3 | fcores.p | |- P = ( `' F " C ) |
|
| 4 | fcores.x | |- X = ( F |` P ) |
|
| 5 | fcores.g | |- ( ph -> G : C --> D ) |
|
| 6 | fcores.y | |- Y = ( G |` E ) |
|
| 7 | 1 2 3 4 5 6 | fcoresf1b | |- ( ph -> ( ( G o. F ) : P -1-1-> D <-> ( X : P -1-1-> E /\ Y : E -1-1-> D ) ) ) |
| 8 | 1 2 3 4 5 6 | fcoresfob | |- ( ph -> ( ( G o. F ) : P -onto-> D <-> Y : E -onto-> D ) ) |
| 9 | 7 8 | anbi12d | |- ( ph -> ( ( ( G o. F ) : P -1-1-> D /\ ( G o. F ) : P -onto-> D ) <-> ( ( X : P -1-1-> E /\ Y : E -1-1-> D ) /\ Y : E -onto-> D ) ) ) |
| 10 | anass | |- ( ( ( X : P -1-1-> E /\ Y : E -1-1-> D ) /\ Y : E -onto-> D ) <-> ( X : P -1-1-> E /\ ( Y : E -1-1-> D /\ Y : E -onto-> D ) ) ) |
|
| 11 | 9 10 | bitrdi | |- ( ph -> ( ( ( G o. F ) : P -1-1-> D /\ ( G o. F ) : P -onto-> D ) <-> ( X : P -1-1-> E /\ ( Y : E -1-1-> D /\ Y : E -onto-> D ) ) ) ) |
| 12 | df-f1o | |- ( ( G o. F ) : P -1-1-onto-> D <-> ( ( G o. F ) : P -1-1-> D /\ ( G o. F ) : P -onto-> D ) ) |
|
| 13 | df-f1o | |- ( Y : E -1-1-onto-> D <-> ( Y : E -1-1-> D /\ Y : E -onto-> D ) ) |
|
| 14 | 13 | anbi2i | |- ( ( X : P -1-1-> E /\ Y : E -1-1-onto-> D ) <-> ( X : P -1-1-> E /\ ( Y : E -1-1-> D /\ Y : E -onto-> D ) ) ) |
| 15 | 11 12 14 | 3bitr4g | |- ( ph -> ( ( G o. F ) : P -1-1-onto-> D <-> ( X : P -1-1-> E /\ Y : E -1-1-onto-> D ) ) ) |