This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two bijections as bijection onto the image of the range of the first bijection. (Contributed by AV, 15-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocoima | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ B C_ C ) -> ( G o. F ) : A -1-1-onto-> ( G " B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 | |- ( G : C -1-1-onto-> D -> G : C -1-1-> D ) |
|
| 2 | 1 | anim1i | |- ( ( G : C -1-1-onto-> D /\ B C_ C ) -> ( G : C -1-1-> D /\ B C_ C ) ) |
| 3 | 2 | 3adant1 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ B C_ C ) -> ( G : C -1-1-> D /\ B C_ C ) ) |
| 4 | f1ores | |- ( ( G : C -1-1-> D /\ B C_ C ) -> ( G |` B ) : B -1-1-onto-> ( G " B ) ) |
|
| 5 | 3 4 | syl | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ B C_ C ) -> ( G |` B ) : B -1-1-onto-> ( G " B ) ) |
| 6 | simp1 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ B C_ C ) -> F : A -1-1-onto-> B ) |
|
| 7 | f1oco | |- ( ( ( G |` B ) : B -1-1-onto-> ( G " B ) /\ F : A -1-1-onto-> B ) -> ( ( G |` B ) o. F ) : A -1-1-onto-> ( G " B ) ) |
|
| 8 | 5 6 7 | syl2anc | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ B C_ C ) -> ( ( G |` B ) o. F ) : A -1-1-onto-> ( G " B ) ) |
| 9 | f1ofo | |- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
|
| 10 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 11 | 9 10 | syl | |- ( F : A -1-1-onto-> B -> ran F = B ) |
| 12 | 11 | eqimssd | |- ( F : A -1-1-onto-> B -> ran F C_ B ) |
| 13 | 12 | 3ad2ant1 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ B C_ C ) -> ran F C_ B ) |
| 14 | cores | |- ( ran F C_ B -> ( ( G |` B ) o. F ) = ( G o. F ) ) |
|
| 15 | 14 | eqcomd | |- ( ran F C_ B -> ( G o. F ) = ( ( G |` B ) o. F ) ) |
| 16 | 13 15 | syl | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ B C_ C ) -> ( G o. F ) = ( ( G |` B ) o. F ) ) |
| 17 | 16 | f1oeq1d | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ B C_ C ) -> ( ( G o. F ) : A -1-1-onto-> ( G " B ) <-> ( ( G |` B ) o. F ) : A -1-1-onto-> ( G " B ) ) ) |
| 18 | 8 17 | mpbird | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ B C_ C ) -> ( G o. F ) : A -1-1-onto-> ( G " B ) ) |