This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2pthnloop.i | |- I = ( iEdg ` G ) |
|
| Assertion | upgr2pthnlp | |- ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( # ` ( I ` ( F ` i ) ) ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pthnloop.i | |- I = ( iEdg ` G ) |
|
| 2 | 1 | 2pthnloop | |- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) |
| 3 | 2 | 3adant1 | |- ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) |
| 4 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
| 5 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 6 | simp2 | |- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> G e. UPGraph ) |
|
| 7 | wrdsymbcl | |- ( ( F e. Word dom I /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` i ) e. dom I ) |
|
| 8 | 1 | upgrle2 | |- ( ( G e. UPGraph /\ ( F ` i ) e. dom I ) -> ( # ` ( I ` ( F ` i ) ) ) <_ 2 ) |
| 9 | 6 7 8 | 3imp3i2an | |- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) <_ 2 ) |
| 10 | fvex | |- ( I ` ( F ` i ) ) e. _V |
|
| 11 | hashxnn0 | |- ( ( I ` ( F ` i ) ) e. _V -> ( # ` ( I ` ( F ` i ) ) ) e. NN0* ) |
|
| 12 | xnn0xr | |- ( ( # ` ( I ` ( F ` i ) ) ) e. NN0* -> ( # ` ( I ` ( F ` i ) ) ) e. RR* ) |
|
| 13 | 10 11 12 | mp2b | |- ( # ` ( I ` ( F ` i ) ) ) e. RR* |
| 14 | 2re | |- 2 e. RR |
|
| 15 | 14 | rexri | |- 2 e. RR* |
| 16 | 13 15 | pm3.2i | |- ( ( # ` ( I ` ( F ` i ) ) ) e. RR* /\ 2 e. RR* ) |
| 17 | xrletri3 | |- ( ( ( # ` ( I ` ( F ` i ) ) ) e. RR* /\ 2 e. RR* ) -> ( ( # ` ( I ` ( F ` i ) ) ) = 2 <-> ( ( # ` ( I ` ( F ` i ) ) ) <_ 2 /\ 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
|
| 18 | 16 17 | mp1i | |- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( # ` ( I ` ( F ` i ) ) ) = 2 <-> ( ( # ` ( I ` ( F ` i ) ) ) <_ 2 /\ 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) |
| 19 | 18 | biimprd | |- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` ( I ` ( F ` i ) ) ) <_ 2 /\ 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) |
| 20 | 9 19 | mpand | |- ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) |
| 21 | 20 | 3exp | |- ( F e. Word dom I -> ( G e. UPGraph -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) ) |
| 22 | 4 5 21 | 3syl | |- ( F ( Paths ` G ) P -> ( G e. UPGraph -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) ) |
| 23 | 22 | impcom | |- ( ( G e. UPGraph /\ F ( Paths ` G ) P ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) |
| 24 | 23 | 3adant3 | |- ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) |
| 25 | 24 | imp | |- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) |
| 26 | 25 | ralimdva | |- ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) |
| 27 | 3 26 | mpd | |- ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( # ` ( I ` ( F ` i ) ) ) = 2 ) |