This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A loop (which is an edge at index J ) induces a path of length 1 from a vertex to itself in a hypergraph. (Contributed by AV, 1-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lppthon.i | |- I = ( iEdg ` G ) |
|
| Assertion | lppthon | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> <" J "> ( A ( PathsOn ` G ) A ) <" A A "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lppthon.i | |- I = ( iEdg ` G ) |
|
| 2 | eqid | |- <" A A "> = <" A A "> |
|
| 3 | eqid | |- <" J "> = <" J "> |
|
| 4 | 1 | lpvtx | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> A e. ( Vtx ` G ) ) |
| 5 | simpl3 | |- ( ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) /\ A = A ) -> ( I ` J ) = { A } ) |
|
| 6 | eqid | |- A = A |
|
| 7 | eqneqall | |- ( A = A -> ( A =/= A -> { A , A } C_ ( I ` J ) ) ) |
|
| 8 | 6 7 | ax-mp | |- ( A =/= A -> { A , A } C_ ( I ` J ) ) |
| 9 | 8 | adantl | |- ( ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) /\ A =/= A ) -> { A , A } C_ ( I ` J ) ) |
| 10 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 11 | 2 3 4 4 5 9 10 1 | 1pthond | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> <" J "> ( A ( PathsOn ` G ) A ) <" A A "> ) |