This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for a pair equal to a singleton, deduction form. (Contributed by Thierry Arnoux, 27-Dec-2016) (Revised by AV, 13-Jun-2022) (Revised by AV, 16-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqsnd.1 | |- ( ph -> A e. V ) |
|
| preqsnd.2 | |- ( ph -> B e. W ) |
||
| Assertion | preqsnd | |- ( ph -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqsnd.1 | |- ( ph -> A e. V ) |
|
| 2 | preqsnd.2 | |- ( ph -> B e. W ) |
|
| 3 | 1 | adantl | |- ( ( C e. _V /\ ph ) -> A e. V ) |
| 4 | 2 | adantl | |- ( ( C e. _V /\ ph ) -> B e. W ) |
| 5 | simpl | |- ( ( C e. _V /\ ph ) -> C e. _V ) |
|
| 6 | dfsn2 | |- { C } = { C , C } |
|
| 7 | 6 | eqeq2i | |- ( { A , B } = { C } <-> { A , B } = { C , C } ) |
| 8 | preq12bg | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. _V /\ C e. _V ) ) -> ( { A , B } = { C , C } <-> ( ( A = C /\ B = C ) \/ ( A = C /\ B = C ) ) ) ) |
|
| 9 | oridm | |- ( ( ( A = C /\ B = C ) \/ ( A = C /\ B = C ) ) <-> ( A = C /\ B = C ) ) |
|
| 10 | 8 9 | bitrdi | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. _V /\ C e. _V ) ) -> ( { A , B } = { C , C } <-> ( A = C /\ B = C ) ) ) |
| 11 | 7 10 | bitrid | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. _V /\ C e. _V ) ) -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |
| 12 | 3 4 5 5 11 | syl22anc | |- ( ( C e. _V /\ ph ) -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |
| 13 | snprc | |- ( -. C e. _V <-> { C } = (/) ) |
|
| 14 | 13 | biimpi | |- ( -. C e. _V -> { C } = (/) ) |
| 15 | 14 | adantr | |- ( ( -. C e. _V /\ ph ) -> { C } = (/) ) |
| 16 | 15 | eqeq2d | |- ( ( -. C e. _V /\ ph ) -> ( { A , B } = { C } <-> { A , B } = (/) ) ) |
| 17 | prnzg | |- ( A e. V -> { A , B } =/= (/) ) |
|
| 18 | eqneqall | |- ( { A , B } = (/) -> ( { A , B } =/= (/) -> ( A = C /\ B = C ) ) ) |
|
| 19 | 17 18 | syl5com | |- ( A e. V -> ( { A , B } = (/) -> ( A = C /\ B = C ) ) ) |
| 20 | 1 19 | syl | |- ( ph -> ( { A , B } = (/) -> ( A = C /\ B = C ) ) ) |
| 21 | 20 | adantl | |- ( ( -. C e. _V /\ ph ) -> ( { A , B } = (/) -> ( A = C /\ B = C ) ) ) |
| 22 | 16 21 | sylbid | |- ( ( -. C e. _V /\ ph ) -> ( { A , B } = { C } -> ( A = C /\ B = C ) ) ) |
| 23 | eleq1 | |- ( C = A -> ( C e. _V <-> A e. _V ) ) |
|
| 24 | 23 | eqcoms | |- ( A = C -> ( C e. _V <-> A e. _V ) ) |
| 25 | 24 | notbid | |- ( A = C -> ( -. C e. _V <-> -. A e. _V ) ) |
| 26 | pm2.24 | |- ( A e. _V -> ( -. A e. _V -> ( B = C -> { A , B } = { C } ) ) ) |
|
| 27 | elex | |- ( A e. V -> A e. _V ) |
|
| 28 | 26 27 | syl11 | |- ( -. A e. _V -> ( A e. V -> ( B = C -> { A , B } = { C } ) ) ) |
| 29 | 25 28 | biimtrdi | |- ( A = C -> ( -. C e. _V -> ( A e. V -> ( B = C -> { A , B } = { C } ) ) ) ) |
| 30 | 29 | com13 | |- ( A e. V -> ( -. C e. _V -> ( A = C -> ( B = C -> { A , B } = { C } ) ) ) ) |
| 31 | 1 30 | syl | |- ( ph -> ( -. C e. _V -> ( A = C -> ( B = C -> { A , B } = { C } ) ) ) ) |
| 32 | 31 | impcom | |- ( ( -. C e. _V /\ ph ) -> ( A = C -> ( B = C -> { A , B } = { C } ) ) ) |
| 33 | 32 | impd | |- ( ( -. C e. _V /\ ph ) -> ( ( A = C /\ B = C ) -> { A , B } = { C } ) ) |
| 34 | 22 33 | impbid | |- ( ( -. C e. _V /\ ph ) -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |
| 35 | 12 34 | pm2.61ian | |- ( ph -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |