This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of divisors for a prime is P + 1 because the only divisors are 1 and P . (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sgmprm | |- ( P e. Prime -> ( 1 sigma P ) = ( P + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | 1nn0 | |- 1 e. NN0 |
|
| 3 | sgmppw | |- ( ( 1 e. CC /\ P e. Prime /\ 1 e. NN0 ) -> ( 1 sigma ( P ^ 1 ) ) = sum_ k e. ( 0 ... 1 ) ( ( P ^c 1 ) ^ k ) ) |
|
| 4 | 1 2 3 | mp3an13 | |- ( P e. Prime -> ( 1 sigma ( P ^ 1 ) ) = sum_ k e. ( 0 ... 1 ) ( ( P ^c 1 ) ^ k ) ) |
| 5 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 6 | 5 | nncnd | |- ( P e. Prime -> P e. CC ) |
| 7 | 6 | exp1d | |- ( P e. Prime -> ( P ^ 1 ) = P ) |
| 8 | 7 | oveq2d | |- ( P e. Prime -> ( 1 sigma ( P ^ 1 ) ) = ( 1 sigma P ) ) |
| 9 | 6 | adantr | |- ( ( P e. Prime /\ k e. ( 0 ... 1 ) ) -> P e. CC ) |
| 10 | 9 | cxp1d | |- ( ( P e. Prime /\ k e. ( 0 ... 1 ) ) -> ( P ^c 1 ) = P ) |
| 11 | 10 | oveq1d | |- ( ( P e. Prime /\ k e. ( 0 ... 1 ) ) -> ( ( P ^c 1 ) ^ k ) = ( P ^ k ) ) |
| 12 | 11 | sumeq2dv | |- ( P e. Prime -> sum_ k e. ( 0 ... 1 ) ( ( P ^c 1 ) ^ k ) = sum_ k e. ( 0 ... 1 ) ( P ^ k ) ) |
| 13 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 14 | 13 | oveq2i | |- ( 0 ... ( 1 - 1 ) ) = ( 0 ... 0 ) |
| 15 | 14 | sumeq1i | |- sum_ k e. ( 0 ... ( 1 - 1 ) ) ( P ^ k ) = sum_ k e. ( 0 ... 0 ) ( P ^ k ) |
| 16 | 0z | |- 0 e. ZZ |
|
| 17 | 6 | exp0d | |- ( P e. Prime -> ( P ^ 0 ) = 1 ) |
| 18 | 17 1 | eqeltrdi | |- ( P e. Prime -> ( P ^ 0 ) e. CC ) |
| 19 | oveq2 | |- ( k = 0 -> ( P ^ k ) = ( P ^ 0 ) ) |
|
| 20 | 19 | fsum1 | |- ( ( 0 e. ZZ /\ ( P ^ 0 ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( P ^ k ) = ( P ^ 0 ) ) |
| 21 | 16 18 20 | sylancr | |- ( P e. Prime -> sum_ k e. ( 0 ... 0 ) ( P ^ k ) = ( P ^ 0 ) ) |
| 22 | 21 17 | eqtrd | |- ( P e. Prime -> sum_ k e. ( 0 ... 0 ) ( P ^ k ) = 1 ) |
| 23 | 15 22 | eqtrid | |- ( P e. Prime -> sum_ k e. ( 0 ... ( 1 - 1 ) ) ( P ^ k ) = 1 ) |
| 24 | 23 7 | oveq12d | |- ( P e. Prime -> ( sum_ k e. ( 0 ... ( 1 - 1 ) ) ( P ^ k ) + ( P ^ 1 ) ) = ( 1 + P ) ) |
| 25 | 2 | a1i | |- ( P e. Prime -> 1 e. NN0 ) |
| 26 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 27 | 25 26 | eleqtrdi | |- ( P e. Prime -> 1 e. ( ZZ>= ` 0 ) ) |
| 28 | elfznn0 | |- ( k e. ( 0 ... 1 ) -> k e. NN0 ) |
|
| 29 | expcl | |- ( ( P e. CC /\ k e. NN0 ) -> ( P ^ k ) e. CC ) |
|
| 30 | 6 28 29 | syl2an | |- ( ( P e. Prime /\ k e. ( 0 ... 1 ) ) -> ( P ^ k ) e. CC ) |
| 31 | oveq2 | |- ( k = 1 -> ( P ^ k ) = ( P ^ 1 ) ) |
|
| 32 | 27 30 31 | fsumm1 | |- ( P e. Prime -> sum_ k e. ( 0 ... 1 ) ( P ^ k ) = ( sum_ k e. ( 0 ... ( 1 - 1 ) ) ( P ^ k ) + ( P ^ 1 ) ) ) |
| 33 | addcom | |- ( ( P e. CC /\ 1 e. CC ) -> ( P + 1 ) = ( 1 + P ) ) |
|
| 34 | 6 1 33 | sylancl | |- ( P e. Prime -> ( P + 1 ) = ( 1 + P ) ) |
| 35 | 24 32 34 | 3eqtr4d | |- ( P e. Prime -> sum_ k e. ( 0 ... 1 ) ( P ^ k ) = ( P + 1 ) ) |
| 36 | 12 35 | eqtrd | |- ( P e. Prime -> sum_ k e. ( 0 ... 1 ) ( ( P ^c 1 ) ^ k ) = ( P + 1 ) ) |
| 37 | 4 8 36 | 3eqtr3d | |- ( P e. Prime -> ( 1 sigma P ) = ( P + 1 ) ) |