This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the sum-of-divisors function, usually denoted σ0(n). (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0sgm | |- ( A e. NN -> ( 0 sigma A ) = ( # ` { p e. NN | p || A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | sgmval2 | |- ( ( 0 e. ZZ /\ A e. NN ) -> ( 0 sigma A ) = sum_ k e. { p e. NN | p || A } ( k ^ 0 ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. NN -> ( 0 sigma A ) = sum_ k e. { p e. NN | p || A } ( k ^ 0 ) ) |
| 4 | elrabi | |- ( k e. { p e. NN | p || A } -> k e. NN ) |
|
| 5 | 4 | nncnd | |- ( k e. { p e. NN | p || A } -> k e. CC ) |
| 6 | 5 | exp0d | |- ( k e. { p e. NN | p || A } -> ( k ^ 0 ) = 1 ) |
| 7 | 6 | sumeq2i | |- sum_ k e. { p e. NN | p || A } ( k ^ 0 ) = sum_ k e. { p e. NN | p || A } 1 |
| 8 | dvdsfi | |- ( A e. NN -> { p e. NN | p || A } e. Fin ) |
|
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | fsumconst | |- ( ( { p e. NN | p || A } e. Fin /\ 1 e. CC ) -> sum_ k e. { p e. NN | p || A } 1 = ( ( # ` { p e. NN | p || A } ) x. 1 ) ) |
|
| 11 | 8 9 10 | sylancl | |- ( A e. NN -> sum_ k e. { p e. NN | p || A } 1 = ( ( # ` { p e. NN | p || A } ) x. 1 ) ) |
| 12 | 7 11 | eqtrid | |- ( A e. NN -> sum_ k e. { p e. NN | p || A } ( k ^ 0 ) = ( ( # ` { p e. NN | p || A } ) x. 1 ) ) |
| 13 | hashcl | |- ( { p e. NN | p || A } e. Fin -> ( # ` { p e. NN | p || A } ) e. NN0 ) |
|
| 14 | 8 13 | syl | |- ( A e. NN -> ( # ` { p e. NN | p || A } ) e. NN0 ) |
| 15 | 14 | nn0cnd | |- ( A e. NN -> ( # ` { p e. NN | p || A } ) e. CC ) |
| 16 | 15 | mulridd | |- ( A e. NN -> ( ( # ` { p e. NN | p || A } ) x. 1 ) = ( # ` { p e. NN | p || A } ) ) |
| 17 | 3 12 16 | 3eqtrd | |- ( A e. NN -> ( 0 sigma A ) = ( # ` { p e. NN | p || A } ) ) |