This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the sum-of-divisors function, usually denoted σ0(n). (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0sgm | ⊢ ( 𝐴 ∈ ℕ → ( 0 σ 𝐴 ) = ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | sgmval2 | ⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 0 σ 𝐴 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℕ → ( 0 σ 𝐴 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) ) |
| 4 | elrabi | ⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } → 𝑘 ∈ ℕ ) | |
| 5 | 4 | nncnd | ⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } → 𝑘 ∈ ℂ ) |
| 6 | 5 | exp0d | ⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } → ( 𝑘 ↑ 0 ) = 1 ) |
| 7 | 6 | sumeq2i | ⊢ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } 1 |
| 8 | dvdsfi | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) | |
| 9 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 10 | fsumconst | ⊢ ( ( { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } 1 = ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } 1 = ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) ) |
| 12 | 7 11 | eqtrid | ⊢ ( 𝐴 ∈ ℕ → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ( 𝑘 ↑ 0 ) = ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) ) |
| 13 | hashcl | ⊢ ( { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) | |
| 14 | 8 13 | syl | ⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
| 15 | 14 | nn0cnd | ⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℂ ) |
| 16 | 15 | mulridd | ⊢ ( 𝐴 ∈ ℕ → ( ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) · 1 ) = ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ) |
| 17 | 3 12 16 | 3eqtrd | ⊢ ( 𝐴 ∈ ℕ → ( 0 σ 𝐴 ) = ( ♯ ‘ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) ) |