This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgmval2 | |- ( ( A e. ZZ /\ B e. NN ) -> ( A sigma B ) = sum_ k e. { p e. NN | p || B } ( k ^ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 2 | sgmval | |- ( ( A e. CC /\ B e. NN ) -> ( A sigma B ) = sum_ k e. { p e. NN | p || B } ( k ^c A ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. ZZ /\ B e. NN ) -> ( A sigma B ) = sum_ k e. { p e. NN | p || B } ( k ^c A ) ) |
| 4 | ssrab2 | |- { p e. NN | p || B } C_ NN |
|
| 5 | simpr | |- ( ( ( A e. ZZ /\ B e. NN ) /\ k e. { p e. NN | p || B } ) -> k e. { p e. NN | p || B } ) |
|
| 6 | 4 5 | sselid | |- ( ( ( A e. ZZ /\ B e. NN ) /\ k e. { p e. NN | p || B } ) -> k e. NN ) |
| 7 | 6 | nncnd | |- ( ( ( A e. ZZ /\ B e. NN ) /\ k e. { p e. NN | p || B } ) -> k e. CC ) |
| 8 | 6 | nnne0d | |- ( ( ( A e. ZZ /\ B e. NN ) /\ k e. { p e. NN | p || B } ) -> k =/= 0 ) |
| 9 | simpll | |- ( ( ( A e. ZZ /\ B e. NN ) /\ k e. { p e. NN | p || B } ) -> A e. ZZ ) |
|
| 10 | 7 8 9 | cxpexpzd | |- ( ( ( A e. ZZ /\ B e. NN ) /\ k e. { p e. NN | p || B } ) -> ( k ^c A ) = ( k ^ A ) ) |
| 11 | 10 | sumeq2dv | |- ( ( A e. ZZ /\ B e. NN ) -> sum_ k e. { p e. NN | p || B } ( k ^c A ) = sum_ k e. { p e. NN | p || B } ( k ^ A ) ) |
| 12 | 3 11 | eqtrd | |- ( ( A e. ZZ /\ B e. NN ) -> ( A sigma B ) = sum_ k e. { p e. NN | p || B } ( k ^ A ) ) |