This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If C is a superset of B and B dominates A , then C also dominates A . (Contributed by BTernaryTau, 7-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domssr | |- ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> A ~<_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | |- ( A ~<_ B -> E. f f : A -1-1-> B ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> E. f f : A -1-1-> B ) |
| 3 | simp2 | |- ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> B C_ C ) |
|
| 4 | reldom | |- Rel ~<_ |
|
| 5 | 4 | brrelex1i | |- ( A ~<_ B -> A e. _V ) |
| 6 | 5 | 3ad2ant3 | |- ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> A e. _V ) |
| 7 | simp1 | |- ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> C e. V ) |
|
| 8 | 3 6 7 | jca32 | |- ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> ( B C_ C /\ ( A e. _V /\ C e. V ) ) ) |
| 9 | f1ss | |- ( ( f : A -1-1-> B /\ B C_ C ) -> f : A -1-1-> C ) |
|
| 10 | vex | |- f e. _V |
|
| 11 | f1dom4g | |- ( ( ( f e. _V /\ A e. _V /\ C e. V ) /\ f : A -1-1-> C ) -> A ~<_ C ) |
|
| 12 | 10 11 | mp3anl1 | |- ( ( ( A e. _V /\ C e. V ) /\ f : A -1-1-> C ) -> A ~<_ C ) |
| 13 | 12 | ancoms | |- ( ( f : A -1-1-> C /\ ( A e. _V /\ C e. V ) ) -> A ~<_ C ) |
| 14 | 9 13 | sylan | |- ( ( ( f : A -1-1-> B /\ B C_ C ) /\ ( A e. _V /\ C e. V ) ) -> A ~<_ C ) |
| 15 | 14 | expl | |- ( f : A -1-1-> B -> ( ( B C_ C /\ ( A e. _V /\ C e. V ) ) -> A ~<_ C ) ) |
| 16 | 15 | exlimiv | |- ( E. f f : A -1-1-> B -> ( ( B C_ C /\ ( A e. _V /\ C e. V ) ) -> A ~<_ C ) ) |
| 17 | 2 8 16 | sylc | |- ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> A ~<_ C ) |