This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A has size bounded by an integer B , then A is finite. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashbnd | |- ( ( A e. V /\ B e. NN0 /\ ( # ` A ) <_ B ) -> A e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | |- ( B e. NN0 -> B e. RR ) |
|
| 2 | ltpnf | |- ( B e. RR -> B < +oo ) |
|
| 3 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 4 | pnfxr | |- +oo e. RR* |
|
| 5 | xrltnle | |- ( ( B e. RR* /\ +oo e. RR* ) -> ( B < +oo <-> -. +oo <_ B ) ) |
|
| 6 | 3 4 5 | sylancl | |- ( B e. RR -> ( B < +oo <-> -. +oo <_ B ) ) |
| 7 | 2 6 | mpbid | |- ( B e. RR -> -. +oo <_ B ) |
| 8 | 1 7 | syl | |- ( B e. NN0 -> -. +oo <_ B ) |
| 9 | hashinf | |- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
|
| 10 | 9 | breq1d | |- ( ( A e. V /\ -. A e. Fin ) -> ( ( # ` A ) <_ B <-> +oo <_ B ) ) |
| 11 | 10 | notbid | |- ( ( A e. V /\ -. A e. Fin ) -> ( -. ( # ` A ) <_ B <-> -. +oo <_ B ) ) |
| 12 | 8 11 | syl5ibrcom | |- ( B e. NN0 -> ( ( A e. V /\ -. A e. Fin ) -> -. ( # ` A ) <_ B ) ) |
| 13 | 12 | expdimp | |- ( ( B e. NN0 /\ A e. V ) -> ( -. A e. Fin -> -. ( # ` A ) <_ B ) ) |
| 14 | 13 | ancoms | |- ( ( A e. V /\ B e. NN0 ) -> ( -. A e. Fin -> -. ( # ` A ) <_ B ) ) |
| 15 | 14 | con4d | |- ( ( A e. V /\ B e. NN0 ) -> ( ( # ` A ) <_ B -> A e. Fin ) ) |
| 16 | 15 | 3impia | |- ( ( A e. V /\ B e. NN0 /\ ( # ` A ) <_ B ) -> A e. Fin ) |