This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019) (Proof shortened by SN, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | |- B = ( Base ` R ) |
|
| 0ring.0 | |- .0. = ( 0g ` R ) |
||
| 0ring01eq.1 | |- .1. = ( 1r ` R ) |
||
| Assertion | 01eq0ring | |- ( ( R e. Ring /\ .0. = .1. ) -> B = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | |- B = ( Base ` R ) |
|
| 2 | 0ring.0 | |- .0. = ( 0g ` R ) |
|
| 3 | 0ring01eq.1 | |- .1. = ( 1r ` R ) |
|
| 4 | eqcom | |- ( .0. = .1. <-> .1. = .0. ) |
|
| 5 | 1 2 | ring0cl | |- ( R e. Ring -> .0. e. B ) |
| 6 | 5 | ne0d | |- ( R e. Ring -> B =/= (/) ) |
| 7 | 5 | adantr | |- ( ( R e. Ring /\ x e. B ) -> .0. e. B ) |
| 8 | 1 3 2 | ring1eq0 | |- ( ( R e. Ring /\ x e. B /\ .0. e. B ) -> ( .1. = .0. -> x = .0. ) ) |
| 9 | 7 8 | mpd3an3 | |- ( ( R e. Ring /\ x e. B ) -> ( .1. = .0. -> x = .0. ) ) |
| 10 | 9 | impancom | |- ( ( R e. Ring /\ .1. = .0. ) -> ( x e. B -> x = .0. ) ) |
| 11 | 10 | ralrimiv | |- ( ( R e. Ring /\ .1. = .0. ) -> A. x e. B x = .0. ) |
| 12 | eqsn | |- ( B =/= (/) -> ( B = { .0. } <-> A. x e. B x = .0. ) ) |
|
| 13 | 12 | biimpar | |- ( ( B =/= (/) /\ A. x e. B x = .0. ) -> B = { .0. } ) |
| 14 | 6 11 13 | syl2an2r | |- ( ( R e. Ring /\ .1. = .0. ) -> B = { .0. } ) |
| 15 | 4 14 | sylan2b | |- ( ( R e. Ring /\ .0. = .1. ) -> B = { .0. } ) |