This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a ring with only one element, i.e. a zero ring, the zero and the identity element are the same. (Contributed by AV, 14-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | |- B = ( Base ` R ) |
|
| 0ring.0 | |- .0. = ( 0g ` R ) |
||
| 0ring01eq.1 | |- .1. = ( 1r ` R ) |
||
| Assertion | 0ring01eq | |- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .0. = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | |- B = ( Base ` R ) |
|
| 2 | 0ring.0 | |- .0. = ( 0g ` R ) |
|
| 3 | 0ring01eq.1 | |- .1. = ( 1r ` R ) |
|
| 4 | 1 2 | 0ring | |- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { .0. } ) |
| 5 | 1 3 | ringidcl | |- ( R e. Ring -> .1. e. B ) |
| 6 | eleq2 | |- ( B = { .0. } -> ( .1. e. B <-> .1. e. { .0. } ) ) |
|
| 7 | elsni | |- ( .1. e. { .0. } -> .1. = .0. ) |
|
| 8 | 7 | eqcomd | |- ( .1. e. { .0. } -> .0. = .1. ) |
| 9 | 6 8 | biimtrdi | |- ( B = { .0. } -> ( .1. e. B -> .0. = .1. ) ) |
| 10 | 5 9 | syl5com | |- ( R e. Ring -> ( B = { .0. } -> .0. = .1. ) ) |
| 11 | 10 | adantr | |- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> ( B = { .0. } -> .0. = .1. ) ) |
| 12 | 4 11 | mpd | |- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .0. = .1. ) |