This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is less than or equal to its square. (Contributed by BJ, 6-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zzlesq | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ≤ ( 𝑁 ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ) ) | |
| 2 | animorrl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∈ ℕ ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) ) | |
| 3 | olc | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) ) | |
| 4 | 2 3 | jaodan | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ) → ( 𝑁 ∈ ℕ ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) ) |
| 5 | 1 4 | sylbi | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℕ ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) ) |
| 6 | nnlesq | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≤ ( 𝑁 ↑ 2 ) ) | |
| 7 | simpl | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) | |
| 8 | 0red | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
| 9 | 7 | resqcld | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝑁 ↑ 2 ) ∈ ℝ ) |
| 10 | nn0ge0 | ⊢ ( - 𝑁 ∈ ℕ0 → 0 ≤ - 𝑁 ) | |
| 11 | le0neg1 | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 ≤ 0 ↔ 0 ≤ - 𝑁 ) ) | |
| 12 | 11 | biimpar | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 ≤ - 𝑁 ) → 𝑁 ≤ 0 ) |
| 13 | 10 12 | sylan2 | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 𝑁 ≤ 0 ) |
| 14 | 7 | sqge0d | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝑁 ↑ 2 ) ) |
| 15 | 7 8 9 13 14 | letrd | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( 𝑁 ↑ 2 ) ) |
| 16 | 6 15 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → 𝑁 ≤ ( 𝑁 ↑ 2 ) ) |
| 17 | 5 16 | syl | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ≤ ( 𝑁 ↑ 2 ) ) |